Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Infect Dis ; 218(suppl_5): S327-S334, 2018 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-30085081

RESUMO

A better understanding of the mechanisms used by Ebola virus to disable the host immune system and spread the infection are of great importance for development of new therapeutic strategies. We demonstrate that treatment of monocytic cells with Ebola virus shed glycoprotein (GP) promotes their differentiation resulting in increased infection and cell death. The effects were inhibited by blocking Toll-like receptor 4 pathway. In addition, high levels of shed GP were detected in supernatants of cells treated with Ebola vaccines. This study highlights the role of shed GP in Ebola pathogenesis and also in adverse effects associated with Ebola vaccines.


Assuntos
Morte Celular/fisiologia , Diferenciação Celular/fisiologia , Ebolavirus/metabolismo , Glicoproteínas/metabolismo , Monócitos/metabolismo , Receptor 4 Toll-Like/metabolismo , Morte Celular/imunologia , Diferenciação Celular/imunologia , Vacinas contra Ebola/imunologia , Ebolavirus/imunologia , Glicoproteínas/imunologia , Doença pelo Vírus Ebola/imunologia , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno/imunologia , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Monócitos/imunologia , Monócitos/fisiologia , Monócitos/virologia , Células THP-1/metabolismo , Células THP-1/fisiologia , Células THP-1/virologia , Proteínas do Envelope Viral/metabolismo
3.
mBio ; 8(5)2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28951472

RESUMO

Ebola virus (EBOV) disease (EVD) results from an exacerbated immunological response that is highlighted by a burst in the production of inflammatory mediators known as a "cytokine storm." Previous reports have suggested that nonspecific activation of T lymphocytes may play a central role in this phenomenon. T-cell immunoglobulin and mucin domain-containing protein 1 (Tim-1) has recently been shown to interact with virion-associated phosphatidylserine to promote infection. Here, we demonstrate the central role of Tim-1 in EBOV pathogenesis, as Tim-1-/- mice exhibited increased survival rates and reduced disease severity; surprisingly, only a limited decrease in viremia was detected. Tim-1-/- mice exhibited a modified inflammatory response as evidenced by changes in serum cytokines and activation of T helper subsets. A series of in vitro assays based on the Tim-1 expression profile on T cells demonstrated that despite the apparent absence of detectable viral replication in T lymphocytes, EBOV directly binds to isolated T lymphocytes in a phosphatidylserine-Tim-1-dependent manner. Exposure to EBOV resulted in the rapid development of a CD4Hi CD3Low population, non-antigen-specific activation, and cytokine production. Transcriptome and Western blot analysis of EBOV-stimulated CD4+ T cells confirmed the induction of the Tim-1 signaling pathway. Furthermore, comparative analysis of transcriptome data and cytokine/chemokine analysis of supernatants highlight the similarities associated with EBOV-stimulated T cells and the onset of a cytokine storm. Flow cytometry revealed virtually exclusive binding and activation of central memory CD4+ T cells. These findings provide evidence for the role of Tim-1 in the induction of a cytokine storm phenomenon and the pathogenesis of EVD.IMPORTANCE Ebola virus infection is characterized by a massive release of inflammatory mediators, which has come to be known as a cytokine storm. The severity of the cytokine storm is consistently linked with fatal disease outcome. Previous findings have demonstrated that specific T-cell subsets are key contributors to the onset of a cytokine storm. In this study, we investigated the role of Tim-1, a T-cell-receptor-independent trigger of T-cell activation. We first demonstrated that Tim-1-knockout (KO) mice survive lethal Ebola virus challenge. We then used a series of in vitro assays to demonstrate that Ebola virus directly binds primary T cells in a Tim-1-phosphatidylserine-dependent manner. We noted that binding induces a cytokine storm-like phenomenon and that blocking Tim-1-phosphatidylserine interactions reduces viral binding, T-cell activation, and cytokine production. These findings highlight a previously unknown role of Tim-1 in the development of a cytokine storm and "immune paralysis."


Assuntos
Linfócitos T CD4-Positivos/imunologia , Citocinas/imunologia , Ebolavirus/fisiologia , Receptor Celular 1 do Vírus da Hepatite A/metabolismo , Ligação Viral , Animais , Western Blotting , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Quimiocinas/análise , Meios de Cultura , Citocinas/biossíntese , Citocinas/sangue , Perfilação da Expressão Gênica , Receptor Celular 1 do Vírus da Hepatite A/deficiência , Receptor Celular 1 do Vírus da Hepatite A/genética , Interações Hospedeiro-Patógeno , Camundongos , Camundongos Knockout , Fosfatidilserinas/metabolismo , Receptores Virais , Transdução de Sinais , Subpopulações de Linfócitos T/imunologia , Replicação Viral
4.
Protein Cell ; 8(12): 861-877, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28488245

RESUMO

Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line. Despite recent advances in CAR-modified T cell immunotherapy, cost and severe toxicity have hindered its widespread use. To alleviate these disadvantages of CAR-modified T cell immunotherapy, additional cytotoxic cell-mediated immunotherapies are urgently needed. The unique biology of NK cells allows them to serve as a safe, effective, alternative immunotherapeutic strategy to CAR-modified T cells in the clinic. While the fundamental mechanisms underlying the cytotoxicity and side effects of CAR-modified T and NK cell immunotherapies remain poorly understood, the formation of the immunological synapse (IS) between CAR-modified T or NK cells and their susceptible target cells is known to be essential. The role of the IS in CAR T and NK cell immunotherapies will allow scientists to harness the power of CAR-modified T and NK cells to treat cancer and infectious diseases. In this review, we highlight the potential applications of CAR-modified NK cells to treat cancer and human immunodeficiency virus (HIV), and discuss the challenges and possible future directions of CAR-modified NK cell immunotherapy, as well as the importance of understanding the molecular mechanisms of CAR-modified T cell- or NK cell-mediated cytotoxicity and side effects, with a focus on the CAR-modified NK cell IS.


Assuntos
Infecções por HIV , HIV-1/imunologia , Imunidade Celular , Sinapses Imunológicas , Imunoterapia , Neoplasias , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Recombinantes de Fusão/imunologia , Linfócitos T/imunologia , Animais , Infecções por HIV/imunologia , Infecções por HIV/terapia , Humanos , Células Matadoras Naturais/transplante , Neoplasias/imunologia , Neoplasias/terapia , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/genética , Linfócitos T/transplante
5.
PLoS Pathog ; 13(5): e1006397, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28542576

RESUMO

Fatal outcomes of Ebola virus (EBOV) infections are typically preceded by a 'sepsis-like' syndrome and lymphopenia despite T cells being resistant to Ebola infection. The mechanisms that lead to T lymphocytes death remain largely unknown; however, the degree of lymphopenia is highly correlative with fatalities. Here we investigated whether the addition of EBOV or its envelope glycoprotein (GP) to isolated primary human CD4+ T cells induced cell death. We observed a significant decrease in cell viability in a GP-dependent manner, which is suggestive of a direct role of GP in T cell death. Using immunoprecipitation assays and flow cytometry, we demonstrate that EBOV directly binds to CD4+ T cells through interaction of GP with TLR4. Transcriptome analysis revealed that the addition of EBOV to CD4+ T cells results in the significant upregulation of pathways associated with interferon signaling, pattern recognition receptors and intracellular activation of NFκB signaling pathway. Both transcriptome analysis and specific inhibitors allowed identification of apoptosis and necrosis as mechanisms associated with the observed T cell death following exposure to EBOV. The addition of the TLR4 inhibitor CLI-095 significantly reduced CD4+ T cell death induced by GP. EBOV stimulation of primary CD4+ T cells resulted in a significant increase in secreted TNFα; inhibition of TNFα-mediated signaling events significantly reduced T cell death while inhibitors of both necrosis and apoptosis similarly reduced EBOV-induced T cell death. Lastly, we show that stimulation with EBOV or GP augments monocyte maturation as determined by an overall increase in expression levels of markers of differentiation. Subsequently, the increased rates of cellular differentiation resulted in higher rates of infection further contributing to T cell death. These results demonstrate that GP directly subverts the host's immune response by increasing the susceptibility of monocytes to EBOV infection and triggering lymphopenia through direct and indirect mechanisms.


Assuntos
Linfócitos T CD4-Positivos/citologia , Ebolavirus/metabolismo , Doença pelo Vírus Ebola/fisiopatologia , Proteínas do Envelope Viral/metabolismo , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Morte Celular , Células Cultivadas , Ebolavirus/genética , Doença pelo Vírus Ebola/genética , Doença pelo Vírus Ebola/metabolismo , Doença pelo Vírus Ebola/virologia , Interações Hospedeiro-Patógeno , Humanos , Ligação Proteica , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Proteínas do Envelope Viral/genética
6.
PLoS Pathog ; 12(12): e1006031, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27930745

RESUMO

Ebola virus (EBOV) infections are characterized by deficient T-lymphocyte responses, T-lymphocyte apoptosis and lymphopenia. We previously showed that disabling of interferon-inhibiting domains (IIDs) in the VP24 and VP35 proteins effectively unblocks maturation of dendritic cells (DCs) and increases the secretion of cytokines and chemokines. Here, we investigated the role of IIDs in adaptive and innate cell-mediated responses using recombinant viruses carrying point mutations, which disabled IIDs in VP24 (EBOV/VP24m), VP35 (EBOV/VP35m) or both (EBOV/VP35m/VP24m). Peripheral blood mononuclear cells (PBMCs) from cytomegalovirus (CMV)-seropositive donors were inoculated with the panel of viruses and stimulated with CMV pp65 peptides. Disabling of the VP35 IID resulted in increased proliferation and higher percentages of CD4+ T cells secreting IFNγ and/or TNFα. To address the role of aberrant DC maturation in the IID-mediated suppression of T cell responses, CMV-stimulated DCs were infected with the panel of viruses and co-cultured with autologous T-lymphocytes. Infection with EBOV/VP35m infection resulted in a significant increase, as compared to wt EBOV, in proliferating CD4+ cells secreting IFNγ, TNFα and IL-2. Experiments with expanded CMV-specific T cells demonstrated their increased activation following co-cultivation with CMV-pulsed DCs pre-infected with EBOV/VP24m, EBOV/VP35m and EBOV/VP35m/VP24m, as compared to wt EBOV. Both IIDs were found to block phosphorylation of TCR complex-associated adaptors and downstream signaling molecules. Next, we examined the effects of IIDs on the function of B cells in infected PBMC. Infection with EBOV/VP35m and EBOV/VP35m/VP24m resulted in significant increases in the percentages of phenotypically distinct B-cell subsets and plasma cells, as compared to wt EBOV, suggesting inhibition of B cell function and differentiation by VP35 IID. Finally, infection with EBOV/VP35m increased activation of NK cells, as compared to wt EBOV. These results demonstrate a global suppression of cell-mediated responses by EBOV IIDs and identify the role of DCs in suppression of T-cell responses.


Assuntos
Doença pelo Vírus Ebola/imunologia , Ativação Linfocitária/imunologia , Proteínas Virais/imunologia , Proteínas Virais Reguladoras e Acessórias/imunologia , Linfócitos B/imunologia , Western Blotting , Linfócitos T CD4-Positivos/imunologia , Separação Celular , Células Dendríticas/imunologia , Ebolavirus/imunologia , Citometria de Fluxo , Humanos , Leucócitos Mononucleares/virologia , Microscopia Confocal , Domínios Proteicos/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...