Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 14(1): 14223, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38902271

RESUMO

Absorption methods using polyurethane foams (PUFs) have recently gained popularity in treating oil spills. However, conventional petroleum-based PUFs lack selectivity and are commonly surface-modified using complicated processes that require toxic and harmful solvents to enhance their hydrophobicity and oil sorption capacities. In this paper, a novel naturally superoleophilic foam with inherent hydrophobic properties has been developed through the conventional one-shot foaming method with the integration of coconut oil-based polyol. This bio-based polyol was explicitly handpicked as it is chiefly saturated, highly abundant, and inexpensive. The foam is characterized by an oil sorption capacity range of 14.89-24.65 g g-1 for different types of oil, equivalent to 578-871 times its weight. Its hydrophobic behavior is expressed through a water contact angle of ~ 139°. The foam also showcased excellent chemical stability and high recyclability without a significant loss in absorption capacity after 20 cycles. The incorporation of the coconut oil-based polyol is also shown to improve the morphological, mechanical, and thermal behavior of the foam. It can be inferred from these findings that this novel material holds great potential for revolutionizing sorbents, pioneering a more sustainable and eco-friendly functional material produced via a facile method.

2.
ACS Omega ; 9(19): 21245-21259, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38764615

RESUMO

Semiconducting nanoparticles (SNPs) have garnered significant attention for their role in photocatalysis technology, offering a cost-effective and highly efficient method for breaking down organic dyes. Of particular significance within SNP-based photocatalysis are tunable band gap TiO2 nanoparticles (NPs), which demonstrate remarkable enhancement in photocatalytic efficiency. In the present work, we introduce an approach for the synthesis of TiO2 NPs using kappa-carrageenan (κ-carrageenan), not just as a reducing and stabilizing agent but as a dopant for the resulting TiO2 NPs. During the synthesis of TiO2 NPs in the presence of sulfate-rich carrageenan, the process predominantly leaves residual sulfur and carbon. The presence of residual carbon, in conjunction with sulfur doping, as indicated by fast FTIR spectra, XPS, and EDX, leads to a significant reduction in the band gap of the resulting composite to 2.71 eV. The reduction of composite band gap yields remarkable degradation of methylene blue (99.97%) and methyl orange (97.84%). This work presents an eco-friendly and highly effective solution for the swift removal of environmentally harmful organic dyes.

3.
Chemosphere ; 358: 142226, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38704039

RESUMO

Cellulosic substrates, including wood and thatch, have become icons for sustainable architecture and construction, however, they suffer from high flammability because of their inherent cellulosic composition. Current control measures for such hazards include applying intumescent fire-retardant (IFR) coatings that swell and form a char layer upon ignition, protecting the underlying substrate from burning. Typically, conventional IFR coatings are opaque and are made of halogenated compounds that release toxic fumes when ignited, compromising the roofing's aesthetic value and sustainability. In this work, phytic acid, a naturally occurring phosphorus source extracted from rice bran, was used to synthesize phytic acid-based fire-retardants (PFR) via esterification under reflux, along with powdered chicken eggshells (CES) as calcium carbonate (CaCO3) bio-filler. These components were incorporated into melamine formaldehyde resin to produce the transparent IFR coating. It was revealed that the developed IFR coatings achieved the highest fire protection rating based on UL94 flammability standards compared to the control. The coatings also yielded increased LOI values, indicative of self-extinguishing properties. A 17 °C elevation of the IFR coating's melting temperature and a significant ∼172% increase in enthalpy change from the control were observed, indicating enhanced fire-retardancy. The thermal stability of the coatings was improved, denoted by reduced mass losses, and increased residual masses after thermal degradation. As validated by microscopy and spectroscopy, the abundance of phosphorus and carbon groups in the coatings' condensed phase after combustion indicates enhanced char formation. In the gas phase, TG-FTIR showed the evolution of non-flammable CO2, and fire-retardant PO and P-O-C. Mechanical property testing confirmed no reduction in the adhesion strength of the IFR coating. With these results, the developed IFR coating exhibited enhanced fire-retardancy whilst remaining optically transparent, suggestive of a dual-phase IFR protective mechanism involving the release of gaseous combustion diluents and the formation of a thermally insulating char layer.


Assuntos
Casca de Ovo , Retardadores de Chama , Ácido Fítico , Casca de Ovo/química , Ácido Fítico/química , Animais , Incêndios , Celulose/química , Carbonato de Cálcio/química , Galinhas
4.
ACS Omega ; 9(15): 17238-17246, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38645311

RESUMO

Histamine, a primary biogenic amine (BA) generated through the decarboxylation of amino acids, concentration increases in protein-rich foods during deterioration. Thus, its detection plays a crucial role in ensuring food safety and quality. This study introduces an innovative approach involving the direct integration of dopamine onto gold nanoparticles (DCt-AuNP), aiming at rapid histamine colorimetric detection. Transmission electron microscopy revealed the aggregation of uniformly distributed spherical DCt-AuNPs with 12.02 ± 2.53 nm sizes upon the addition of histamine to DCt-AuNP solution. The Fourier-transform infrared (FTIR) spectra demonstrated the disappearance of the dicarboxy acetone peak at 1710 cm-1 along with the formation of well-defined peaks at 1585 cm-1, and 1396 cm-1 associated with the N-H bending modes and the aromatic C=C bond stretching vibration in histamine molecule, respectively, confirming the ligand exchange and interactions of histamine on the surface of DCt-AuNPs. The UV-vis spectra of the DCt-AuNP solution exhibited a red shift and a reduction in surface plasmon resonance (SPR) peak intensity at 518 nm along with the emergence of the 650 nm peak, signifying aggregation DCt-AuNPs with increasing histamine concentration. Notably, color transitions from wine-red to deep blue were observed in the DCt-AuNP solution in response to histamine, providing a reliable colorimetric signal. Dynamic Light Scattering (DLS) characterization showed a significant increase in the hydrodynamic diameter, from ∼15 to ∼1690 nm, confirming the interparticle cross-linking of DCt-AuNPs in the presence of histamine. This newly developed DCt-AuNP sensor provides colorimetric results in less than a minute that exhibits a remarkable naked-eye histamine detection threshold of 1.57 µM and a calculated detection limit of 0.426 µM, making it a promising tool for the rapid and sensitive detection of histamine.

5.
ACS Omega ; 9(11): 13100-13111, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524426

RESUMO

Agricultural rice straw (RS), often discarded as waste in farmlands, represents a vast and underutilized resource. This study explores the valorization of RS as a potential feedstock for rigid polyurethane/polyisocyanurate foam (RPUF) production. The process begins with the liquefaction of RS to create an RS-based polyol, which is then used in a modified foam formulation to prepare RPUFs. The resulting RPUF samples were comprehensively characterized according to their physical, mechanical, and thermal properties. The results demonstrated that up to 50% by weight of petroleum-based polyol can be substituted with RS-based polyol to produce a highly functional RPUF. The obtained foams exhibited a notably low apparent density of 18-24 kg/m3, exceptional thermal conductivity ranging from 0.031-0.041 W/m-K, and a high compressive strength exceeding 250 kPa. This study underlines the potential of the undervalued agricultural RS as a green alternative to petroleum-based feedstocks to produce a high-value RPUF. Additionally, the findings contribute to the sustainable utilization of abundant agricultural waste while offering an eco-friendly option for various applications, including construction materials and insulation.

6.
ACS Omega ; 9(11): 13112-13124, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38524448

RESUMO

The utilization of coconut diethanolamide (p-CDEA) as a substitute polyol for petroleum-based polyol in fully biobased rigid polyurethane-urea foam (RPUAF) faces challenges due to its short chain and limited cross-linking capability. This leads to compromised cell wall resistance during foam expansion, resulting in significant ruptured cells and adverse effects on mechanical and thermal properties. To address this, a novel sequential amidation-prepolymerization route was employed on coconut oil, yielding a hydroxyl-terminated poly(urethane-urea) prepolymer polyol (COPUAP). Compared to p-CDEA, COPUAP exhibited a decreased hydroxyl value (496.3-473.2 mg KOH/g), an increase in amine value (13.464-24.561 mg KOH/g), and an increase in viscosity (472.4-755.8 mPa·s), indicating enhanced functionality of 34.3 mgKOH/g and chain lengthening. Further, COPUAP was utilized as the sole B-side polyol in the production of RPUAF (PU-COPUAP). The improved functionality of COPUAP and its improved cross-linking capability during foaming have significantly improved cell morphology, resulting in a remarkable 4.7-fold increase in compressive strength (132-628 kPa), a 3.5-fold increase in flexural strength (232-828 kPa), and improved insulation properties with a notable decrease in thermal conductivity (48.02-34.52 mW/m·K) compared to PU-CDEA in the literature. Additionally, PU-COPUAP exhibited a 16.5% increase in the water contact angle (114.93° to 133.87°), attributing to the formation of hydrophobic biuret segments and a tightly packed, highly cross-linked structure inhibiting water penetration. This innovative approach sets a new benchmark for fully biobased rigid foam production, delivering high load-bearing capacity, exceptional insulation, and significantly improved hydrophobicity.

7.
Heliyon ; 9(9): e19491, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662775

RESUMO

The production of biodiesel generates glycerol as a by-product that needs valorization. Glycerol, when converted to polyglycerol, is a potential polyol for bio-based thermoplastic polyurethane (TPU) production. In this study, a novel polyglycerol polyester polyol (PPP) was developed from refined glycerol and coconut oil-based polyester polyol. Glycerol was first converted to glycerol acetate and then polymerized with coconut oil-based polyester polyol (CPP) as secondary polyol and phthalic anhydride. The resulting PPP polymerized at 220 °C and OH:COOH molar ratio of 2.5 exhibited an OH number of <100 mg KOH·g sample-1, an acid number of <10 mg KOH·g sample-1, and a molecular weight (MW) of 3697 g mol-1 meeting the polyol requirement properties for TPU (Handlin et al., 2001; Parcheta et al., 2020) [1-2]. Fourier-transform infrared (FTIR) spectroscopic characterization determined that higher reaction temperatures increase the polymerization rate and decrease the OH and acid numbers. Further, higher OH:COOH molar ratios decrease the polymerization rate and acid number, and increase the OH number. Gel permeation chromatography determined the molecular weight of PPP and suggested two distinct molecular structures which differ only in the number of moles of CPP in the structure. A differential scanning calorimetric (DSC) experiment on a sample of PPP-based polyurethane revealed that it was able to melt and remelt after 3 heating cycles which demonstrates its thermoplastic ability. The novel PPP derived from the glycerol by-product of biodiesel industries can potentially replace petroleum-derived polyols for TPU production.

8.
Materials (Basel) ; 16(15)2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37570156

RESUMO

This study propounds a sustainable alternative to petroleum-based polyurethane (PU) foams, aiming to curtail this nonrenewable resource's continued and uncontrolled use. Coconut fatty acid distillate (CFAD) and crude glycerol (CG), both wastes generated from vegetable oil processes, were utilized for bio-based polyol production for rigid PU foam application. The raw materials were subjected to catalyzed glycerolysis with alkaline-alcohol neutralization and bleaching. The resulting polyol possessed properties suitable for rigid foam application, with an average OH number of 215 mg KOH/g, an acid number of 7.2983 mg KOH/g, and a Gardner color value of 18. The polyol was used to prepare rigid PU foam, and its properties were determined using Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis/derivative thermogravimetric (TGA/DTA), and universal testing machine (UTM). Additionally, the cell foam morphology was investigated by scanning electron microscope (SEM), in which most of its structure revealed an open-celled network and quantified at 92.71% open-cell content using pycnometric testing. The PU foam thermal and mechanical analyses results showed an average compressive strength of 210.43 kPa, a thermal conductivity of 32.10 mW·m-1K-1, and a density of 44.65 kg·m-3. These properties showed its applicability as a type I structural sandwich panel core material, thus demonstrating the potential use of CFAD and CG in commercial polyol and PU foam production.

9.
RSC Adv ; 13(30): 20941-20950, 2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37448637

RESUMO

To attain efficient removal of hexavalent chromium (Cr6+) from aqueous solutions, a novel polyurethane foam-activated carbon (PUAC) adsorbent composite was developed. The composite material was synthesized by the binding of coconut shell-based activated carbon (AC) onto a coconut oil-based polyurethane matrix. To thoroughly characterize the physicochemical properties of the newly developed material, various analytical techniques including FTIR spectroscopy, SEM, XRD, BET, and TGA analyses were conducted. The removal efficiency of the PUAC composite in removing Cr6+ ions from aqueous solutions was evaluated through column experiments with the highest adsorption capacity of 28.41 mg g-1 while taking into account variables such as bed height, flow rate, initial Cr6+ ion concentration, and pH. Experimental data were fitted using Thomas, Yoon-Nelson, and Adams-Bohart models to predict the column profiles and the results demonstrate high breakthrough and exhaustion time dependence on these variables. Among the obtained R2 values of the models, a better fit was observed using the Thomas and Yoon-Nelson models, indicating their ability to effectively predict the adsorption of Cr6+ ions in a fixed bed column. Significantly, the exhausted adsorbent can be conveniently regenerated without any noteworthy loss of adsorption capability. Based on these findings, it can be concluded that this new PUAC composite material holds significant promise as a potent sorbent for wastewater treatment backed by its excellent performance, cost-effectiveness, biodegradability, and outstanding reusability.

10.
Artigo em Inglês | MEDLINE | ID: mdl-37372718

RESUMO

Rivers are vital water sources for humans and homes for aquatic organisms. Conversely, they are well known as the route of plastics into the ocean. Despite being the world's number one emitter of riverine plastics into the ocean, microplastics (MPs), or plastic particles less than 5 mm, in the Philippines' rivers are relatively unexplored. Water samples were collected from six sampling stations along the river channel of the Cagayan de Oro River, one of the largest rivers in Northern Mindanao, Philippines. The extracted microplastics' abundance, distribution, and characteristics were analyzed using a stereomicroscope and Fourier transform infrared spectroscopy (FTIR). The results showed a mean concentration of 300 items/m3 of MPs dominated by blue-colored (59%), fiber (63%), 0.3-0.5 mm (44%), and polyacetylene (48%) particles. The highest concentration of microplastics was recorded near the mouth of the river, and the lowest was in the middle area. The findings indicated a significant difference in MP concentration at the sampling stations. This study is the first assessment of microplastic in a river in Mindanao. The results of this study will aid in formulating mitigation strategies for reducing riverine plastic emissions.


Assuntos
Microplásticos , Poluentes Químicos da Água , Humanos , Plásticos , Rios , Filipinas , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Água
11.
Environ Sci Pollut Res Int ; 30(18): 53662-53673, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36859643

RESUMO

Microplastics (< 5 mm) have lately been identified in the atmosphere of urban, suburban, and even distant places far from plastic particle areas, suggesting the possibility of long-distance atmospheric transport of microplastics. However, the occurrence, fate, transmission, and effects of these suspended atmospheric microplastics (SAMPs) are all currently unknown in the Philippines. This study investigated the presence of suspected microplastic in the atmosphere of sixteen cities and one municipality of Metro Manila, Philippines. Sampling was conducted using a respirable dust sampler mounted with a Whatman GF/C filter paper at an intake flow rate of 1.4 L/min with Whatman GF/C filter paper. Results reveal that all seventeen sampling areas have the presence of SAMPs. A total of 155 SAMPs were found and confirmed in Metro Manila, with the highest concentration in Muntinlupa City and Mandaluyong City (0.023 SAMP/NCM). Fourteen SAMP types were identified across the sampling areas, ⁓ 74% with polyester. This study is the first record of the presence of microplastics suspended in the ambient air in the Philippines. It is estimated that an adult person in Metro Manila has the potential to inhale (5-8 per minute, normal minute ventilation) about 1 SAMP if exposed for about 99.0 to 132 h. Further studies should be done to evaluate the fate and health effects of these SAMPs in Metro Manila's setting.


Assuntos
Plásticos , Poluentes Químicos da Água , Adulto , Humanos , Microplásticos , Filipinas/epidemiologia , Compostos de Fenilmercúrio , Monitoramento Ambiental , Poluentes Químicos da Água/análise
12.
RSC Adv ; 13(3): 1985-1994, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36712635

RESUMO

Coconut oil (CO) has become one of the most important renewable raw materials for polyol synthesis due to its abundance and low price. However, the saturated chemical structure of CO limits its capability for functionalization. In this study, a novel reaction mechanism via the sequential glycerolysis and amidation of CO triglycerides produced an amine-based polyol (p-CDEA). The synthesized biopolyol has a relatively higher hydroxyl value of 361 mg KOH per g relative to previously reported CO-based polyols with values ranging from 270-333 mg KOH per g. This primary hydroxyl-rich p-CDEA was used directly as a sole B-side polyol component in a polyurethane-forming reaction, without further purification. Results showed that a high-performance poly(urethane-urea) (PUA) hybrid foam was successfully produced. It has a compressive strength of 226 kPa and thermal conductivity of 23.2 mW (m-1 K-1), classified as type 1 for a rigid structural sandwich panel core and type 2 for rigid thermal insulation foam applications according to ASTM standards. Fourier-transform infrared (FTIR) spectroscopy was performed to characterize the chemical features of the polyols and foams. Scanning electron microscopy (SEM) analysis was also performed to evaluate the morphological structures of the synthesized foams. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) were conducted to investigate the foam's thermal characteristics. Thus far, this work is the first to report a novel and effective reaction mechanism for the synthesis of a highly functional CO-derived polyol and the first CO-based polyol with no petroleum-based replacement that may serve as raw material for rigid PUA foam production. PUA hybrid foams are potential insulation and structural materials. This study further provided a compelling case for enhanced sustainability of p-CDEA PUA hybrid foam against petroleum-based polyurethane.

13.
Heliyon ; 6(1): e03119, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31909279

RESUMO

This study describes the effects of ceria (CeO2) and dolomite [CaMg(CO3)2] additives on the pyrolysis behavior and fire resistive property of conventional intumescent flame retardant (IFR) coating system for I-beam steel substrate called ammonium polyphosphate-melamine-expandable graphite (APP-MEL-EG) system. The fire resistance of various formulations was evaluated using the standard vertical Bunsen burner fire test. Thermogravimetric analysis (TGA) was used to understand the degradation of coating formulations. Observations by scanning electron microscopy with energy dispersive X-ray spectroscopy (SEM-EDX) demonstrated that significant amounts of additives favored the formation of homogeneous compacted char structures, which were predominantly composed of carbon (C), phosphorus (P) and oxygen (O). These three main components of the char were also found to be in various binding combinations with other lighter elements like nitrogen (N) and hydrogen (H) as illustrated by the attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy results. X-ray photoelectron spectroscopy (XPS) further suggest that polyethylene([(CH2-C2H2-CH2)n-]) free radicals were abundant on the char surface for the two best formulations and the binding energy of this radical promoted the formation of aromatic carbon chains that enhanced the char's thermal stability. This means that the selection of appropriate additives and combinations of flame-retardant ingredients could significantly change the morphology of the char layer and improve its thermal stability during fire exposure.

14.
J Electrochem Soc ; 155(5): K91-K95, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18953420

RESUMO

Carbon-based electrode materials have been widely used for many years for electrochemical charge storage, energy generation, and catalysis. We have developed an electrode material with high specific capacitance by entrapping graphite nanoparticles into a sol-gel network. Films from the resulting colloidal suspensions were highly porous due to the removal of the entrapped organic solvents from sol-gel matrix giving rise to high Brunauer-Emmett-Teller (BET) specific surface areas (654 m(2)/g) and a high capacitance density ( approximately 37 F/g). An exponential increase of capacitance was observed with decreasing scan rates in cyclic voltammetry studies on these films suggesting the presence of pores ranging from micro (< 2 nm) to mesopores. BET surface analysis and scanning electron microscope images of these films also confirmed the presence of the micropores as well as mesopores. A steep drop in the double layer capacitance with polar electrolytes was observed when the films were rendered hydrophilic upon exposure to a mild oxygen plasma. We propose a model whereby the microporous hydrophobic sol-gel matrix perturbs the hydration of ions which moves ions closer to the graphite nanoparticles and consequently increase the capacitance of the film.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...