Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; : e0166724, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037272

RESUMO

Severe COVID-19 has been associated with coinfections with bacterial and fungal pathogens. Notably, patients with COVID-19 who develop Staphylococcus aureus bacteremia exhibit higher rates of mortality than those infected with either pathogen alone. To understand this clinical scenario, we collected and examined S. aureus blood and respiratory isolates from a hospital in New York City during the early phase of the pandemic from both SARS-CoV-2+ and SARS-CoV-2- patients. Whole genome sequencing of these S. aureus isolates revealed broad phylogenetic diversity in both patient groups, suggesting that SARS-CoV-2 coinfection was not associated with a particular S. aureus lineage. Phenotypic characterization of the contemporary collection of S. aureus isolates from SARS-CoV-2+ and SARS-CoV-2- patients revealed no notable differences in several virulence traits examined. However, we noted a trend toward overrepresentation of S. aureus bloodstream strains with low cytotoxicity in the SARS-CoV-2+ group. We observed that patients coinfected with SARS-CoV-2 and S. aureus were more likely to die during the acute phase of infection when the coinfecting S. aureus strain exhibited high or low cytotoxicity. To further investigate the relationship between SARS-CoV-2 and S. aureus infections, we developed a murine coinfection model. These studies revealed that infection with SARS-CoV-2 renders mice susceptible to subsequent superinfection with low cytotoxicity S. aureus. Thus, SARS-CoV-2 infection sensitizes the host to coinfections, including S. aureus isolates with low intrinsic virulence. IMPORTANCE: The COVID-19 pandemic has had an enormous impact on healthcare across the globe. Patients who were severely infected with SARS-CoV-2, the virus causing COVID-19, sometimes became infected with other pathogens, which is termed coinfection. If the coinfecting pathogen is the bacterium Staphylococcus aureus, there is an increased risk of patient death. We collected S. aureus strains that coinfected patients with SARS-CoV-2 to study the disease outcome caused by the interaction of these two important pathogens. We found that both in patients and in mice, coinfection with an S. aureus strain lacking toxicity resulted in more severe disease during the early phase of infection, compared with infection with either pathogen alone. Thus, SARS-CoV-2 infection can directly increase the severity of S. aureus infection.

2.
Cell Host Microbe ; 30(11): 1503-1505, 2022 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-36356564

RESUMO

In this issue of Cell Host & Microbe, Basso et al. delineate a mechanism for the fungal lipase Lip2 during systemic infection with Candida albicans, the most common human fungal pathogen. They find that lipids liberated by Lip2 can manipulate the protective host cytokine response, thereby enhancing fungal virulence.


Assuntos
Candida , Lipase , Humanos , Interleucina-17 , Candida albicans , Virulência
3.
J Biol Chem ; 295(50): 17241-17250, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33051210

RESUMO

Leukocidin ED (LukED) is a pore-forming toxin produced by Staphylococcus aureus, which lyses host cells and promotes virulence of the bacteria. LukED enables S. aureus to acquire iron by lysing erythrocytes, which depends on targeting the host receptor Duffy antigen receptor for chemokines (DARC). The toxin also targets DARC on the endothelium, contributing to the lethality observed during bloodstream infection in mice. LukED is comprised of two monomers: LukE and LukD. LukE binds to DARC and facilitates hemolysis, but the closely related Panton-Valentine leukocidin S (LukS-PV) does not bind to DARC and is not hemolytic. The interaction of LukE with DARC and the role this plays in hemolysis are incompletely characterized. To determine the domain(s) of LukE that are critical for DARC binding, we studied the hemolytic function of LukE-LukS-PV chimeras, in which areas of sequence divergence (divergence regions, or DRs) were swapped between the toxins. We found that two regions of LukE's rim domain contribute to hemolysis, namely residues 57-75 (DR1) and residues 182-196 (DR4). Interestingly, LukE DR1 is sufficient to render LukS-PV capable of DARC binding and hemolysis. Further, LukE, by binding DARC through DR1, promotes the recruitment of LukD to erythrocytes, likely by facilitating LukED oligomer formation. Finally, we show that LukE targets murine Darc through DR1 in vivo to cause host lethality. These findings expand our biochemical understanding of the LukE-DARC interaction and the role that this toxin-receptor pair plays in S. aureus pathophysiology.


Assuntos
Proteínas de Bactérias , Sistema do Grupo Sanguíneo Duffy , Eritrócitos , Exotoxinas , Proteínas Hemolisinas , Receptores de Superfície Celular , Staphylococcus aureus , Animais , Humanos , Camundongos , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sistema do Grupo Sanguíneo Duffy/química , Sistema do Grupo Sanguíneo Duffy/genética , Sistema do Grupo Sanguíneo Duffy/metabolismo , Eritrócitos/química , Eritrócitos/metabolismo , Exotoxinas/química , Exotoxinas/genética , Exotoxinas/metabolismo , Domínios Proteicos , Receptores de Superfície Celular/química , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Staphylococcus aureus/química , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
4.
Cell Host Microbe ; 25(3): 463-470.e9, 2019 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-30799265

RESUMO

The pathogenesis of Staphylococcus aureus is thought to depend on the production of pore-forming leukocidins that kill leukocytes and lyse erythrocytes. Two leukocidins, Leukocidin ED (LukED) and γ-Hemolysin AB (HlgAB), are necessary and sufficient to kill mice upon infection and toxin challenge. We demonstrate that LukED and HlgAB cause vascular congestion and derangements in vascular fluid distribution that rapidly cause death in mice. The Duffy antigen receptor for chemokines (DARC) on endothelial cells, rather than leukocytes or erythrocytes, is the critical target for lethality. Consistent with this, LukED and HlgAB injure primary human endothelial cells in a DARC-dependent manner, and mice with DARC-deficient endothelial cells are resistant to toxin-mediated lethality. During bloodstream infection in mice, DARC targeting by S. aureus causes increased tissue damage, organ dysfunction, and host death. The potential for S. aureus leukocidins to manipulate vascular integrity highlights the importance of these virulence factors.


Assuntos
Proteínas de Bactérias/toxicidade , Toxinas Bacterianas/toxicidade , Sistema do Grupo Sanguíneo Duffy/metabolismo , Células Endoteliais/efeitos dos fármacos , Exotoxinas/toxicidade , Proteínas Hemolisinas/toxicidade , Receptores de Superfície Celular/metabolismo , Infecções Estafilocócicas/patologia , Staphylococcus aureus/patogenicidade , Animais , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Exotoxinas/metabolismo , Proteínas Hemolisinas/metabolismo , Humanos , Camundongos , Camundongos Knockout , Modelos Biológicos , Staphylococcus aureus/metabolismo , Análise de Sobrevida
5.
Sci Transl Med ; 11(475)2019 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-30651319

RESUMO

A key aspect underlying the severity of infections caused by Staphylococcus aureus is the abundance of virulence factors that the pathogen uses to thwart critical components of the human immune response. One such mechanism involves the destruction of host immune cells by cytolytic toxins secreted by S. aureus, including five bicomponent leukocidins: PVL, HlgAB, HlgCB, LukED, and LukAB. Purified leukocidins can lyse immune cells ex vivo, and systemic injections of purified LukED or HlgAB can acutely kill mice. Here, we describe the generation and characterization of centyrins that bind S. aureus leukocidins with high affinity and protect primary human immune cells from toxin-mediated cytolysis. Centyrins are small protein scaffolds derived from the fibronectin type III-binding domain of the human protein tenascin-C. Although centyrins are potent in tissue culture assays, their short serum half-lives limit their efficacies in vivo. By extending the serum half-lives of centyrins through their fusion to an albumin-binding consensus domain, we demonstrate the in vivo efficacy of these biologics in a murine intoxication model and in models of both prophylactic and therapeutic treatment of live S. aureus systemic infections. These biologics that target S. aureus virulence factors have potential for treating and preventing serious staphylococcal infections.


Assuntos
Fatores Biológicos/farmacologia , Leucocidinas/metabolismo , Testes de Neutralização , Staphylococcus aureus/metabolismo , Sequência de Aminoácidos , Animais , Citoproteção/efeitos dos fármacos , Citotoxicidade Imunológica , Hemólise/efeitos dos fármacos , Humanos , Leucocidinas/química , Camundongos , Neutrófilos/efeitos dos fármacos , Neutrófilos/metabolismo , Fagócitos/efeitos dos fármacos , Infecções Estafilocócicas/microbiologia , Infecções Estafilocócicas/patologia , Staphylococcus aureus/efeitos dos fármacos
6.
Nat Commun ; 9(1): 37, 2018 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-29295977

RESUMO

The hallmark of many bacterial infections is pain. The underlying mechanisms of pain during live pathogen invasion are not well understood. Here, we elucidate key molecular mechanisms of pain produced during live methicillin-resistant Staphylococcus aureus (MRSA) infection. We show that spontaneous pain is dependent on the virulence determinant agr and bacterial pore-forming toxins (PFTs). The cation channel, TRPV1, mediated heat hyperalgesia as a distinct pain modality. Three classes of PFTs-alpha-hemolysin (Hla), phenol-soluble modulins (PSMs), and the leukocidin HlgAB-directly induced neuronal firing and produced spontaneous pain. From these mechanisms, we hypothesized that pores formed in neurons would allow entry of the membrane-impermeable sodium channel blocker QX-314 into nociceptors to silence pain during infection. QX-314 induced immediate and long-lasting blockade of pain caused by MRSA infection, significantly more than lidocaine or ibuprofen, two widely used clinical analgesic treatments.


Assuntos
Toxinas Bacterianas/toxicidade , Lidocaína/análogos & derivados , Staphylococcus aureus Resistente à Meticilina/metabolismo , Dor/etiologia , Infecções Estafilocócicas/fisiopatologia , Canais de Cátion TRPV/metabolismo , Anestésicos Locais/farmacologia , Animais , Toxinas Bacterianas/metabolismo , Técnicas de Silenciamento de Genes , Lidocaína/farmacologia , Staphylococcus aureus Resistente à Meticilina/genética , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Dor/tratamento farmacológico , Infecções Estafilocócicas/complicações , Infecções Estafilocócicas/microbiologia
7.
Curr Opin Microbiol ; 35: 58-63, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28013162

RESUMO

Pathogenic bacteria use the bloodstream as a highway for getting around the body, and thus have to find ways to enter and exit through the endothelium. Many bacteria approach this problem by producing toxins that can breach the endothelial barrier through diverse creative mechanisms, including directly killing endothelial cells (ECs), weakening the cytoskeleton within ECs, and breaking the junctions between ECs. Toxins can also modulate the immune response by influencing endothelial biology, and can modulate endothelial function by influencing the response of leukocytes. Understanding these interactions, in both the in vitro and in vivo contexts, is of critical importance for designing new therapies for sepsis and other severe bacterial diseases.


Assuntos
Infecções Bacterianas/microbiologia , Infecções Bacterianas/fisiopatologia , Células Endoteliais/microbiologia , Células Endoteliais/patologia , Bactérias Gram-Negativas/patogenicidade , Animais , Infecções Bacterianas/imunologia , Toxinas Bacterianas/metabolismo , Vesículas Citoplasmáticas/microbiologia , Endotélio Vascular/microbiologia , Humanos , Camundongos , Sepse/microbiologia , Staphylococcus aureus/patogenicidade
9.
EMBO Rep ; 17(3): 428-40, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26882549

RESUMO

Staphylococcus aureus (S. aureus) is a human pathogen that relies on the subversion of host phagocytes to support its pathogenic lifestyle. S. aureus strains can produce up to five beta-barrel, bi-component, pore-forming leukocidins that target and kill host phagocytes. Thus, preventing immune cell killing by these toxins is likely to boost host immunity. Here, we describe the identification of glycine-rich motifs within the membrane-penetrating stem domains of the leukocidin subunits that are critical for killing primary human neutrophils. Remarkably, leukocidins lacking these glycine-rich motifs exhibit dominant-negative inhibitory effects toward their wild-type toxin counterparts as well as other leukocidins. Biochemical and cellular assays revealed that these dominant-negative toxins work by forming mixed complexes that are impaired in pore formation. The dominant-negative leukocidins inhibited S. aureus cytotoxicity toward primary human neutrophils, protected mice from lethal challenge by wild-type leukocidin, and reduced bacterial burden in a murine model of bloodstream infection. Thus, we describe the first example of staphylococcal bi-component dominant-negative toxins and their potential as novel therapeutics to combat S. aureus infection.


Assuntos
Citotoxinas/genética , Leucocidinas/genética , Mutação , Infecções Estafilocócicas/prevenção & controle , Staphylococcus aureus/patogenicidade , Animais , Citotoxinas/química , Citotoxinas/metabolismo , Citotoxinas/uso terapêutico , Feminino , Glicina/química , Glicina/genética , Humanos , Leucocidinas/química , Leucocidinas/metabolismo , Leucocidinas/uso terapêutico , Camundongos , Neutrófilos/microbiologia , Fagócitos/microbiologia , Domínios Proteicos , Multimerização Proteica , Staphylococcus aureus/genética , Virulência/genética
11.
RNA ; 21(2): 213-29, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25492963

RESUMO

Pre-mRNA molecules in humans contain mostly short internal exons flanked by longer introns. To explain the removal of such introns, exon recognition instead of intron recognition has been proposed. We studied this exon definition using designer exons (DEs) made up of three prototype modules of our own design: an exonic splicing enhancer (ESE), an exonic splicing silencer (ESS), and a Reference Sequence (R) predicted to be neither. Each DE was examined as the central exon in a three-exon minigene. DEs made of R modules showed a sharp size dependence, with exons shorter than 14 nt and longer than 174 nt splicing poorly. Changing the strengths of the splice sites improved longer exon splicing but worsened shorter exon splicing, effectively displacing the curve to the right. For the ESE we found, unexpectedly, that its enhancement efficiency was independent of its position within the exon. For the ESS we found a step-wise positional increase in its effects; it was most effective at the 3' end of the exon. To apply these results quantitatively, we developed a biophysical model for exon definition of internal exons undergoing cotranscriptional splicing. This model features commitment to inclusion before the downstream exon is synthesized and competition between skipping and inclusion fates afterward. Collision of both exon ends to form an exon definition complex was incorporated to account for the effect of size; ESE/ESS effects were modeled on the basis of stabilization/destabilization. This model accurately predicted the outcome of independent experiments on more complex DEs that combined ESEs and ESSs.


Assuntos
Éxons , Precursores de RNA/genética , Splicing de RNA , Sequência de Bases , Células HEK293 , Humanos , Modelos Genéticos , Plasmídeos/genética , Sítios de Splice de RNA , Sequências Reguladoras de Ácido Ribonucleico
12.
PLoS One ; 8(6): e67453, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23840706

RESUMO

Efficient vaccination against the parasite Leishmania major, the causative agent of human cutaneous leishmaniasis, requires development of type 1 T-helper (Th1) CD4(+) T cell immunity. Because of their unique capacity to initiate and modulate immune responses, dendritic cells (DCs) are attractive targets for development of novel vaccines. In this study, for the first time, we investigated the capacity of a DC-targeted vaccine to induce protective responses against L. major. To this end, we genetically engineered the N-terminal portion of the stress-inducible 1 protein of L. major (LmSTI1a) into anti-DEC205/CD205 (DEC) monoclonal antibody (mAb) and thereby delivered the conjugated protein to DEC(+) DCs in situ in the intact animal. Delivery of LmSTI1a to adjuvant-matured DCs increased the frequency of antigen-specific CD4(+) T cells producing IFN-γ(+), IL-2(+), and TNF-α(+) in two different strains of mice (C57BL/6 and Balb/c), while such responses were not observed with the same doses of a control Ig-LmSTI1a mAb without receptor affinity or with non-targeted LmSTI1a protein. Using a peptide library for LmSTI1a, we identified at least two distinct CD4(+) T cell mimetopes in each MHC class II haplotype, consistent with the induction of broad immunity. When we compared T cell immune responses generated after targeting DCs with LmSTI1a or other L. major antigens, including LACK (Leishmania receptor for activated C kinase) and LeIF (Leishmania eukaryotic ribosomal elongation and initiation factor 4a), we found that LmSTI1a was superior for generation of IFN-γ-producing CD4(+) T cells, which correlated with higher protection of susceptible Balb/c mice to a challenge with L. major. For the first time, this study demonstrates the potential of a DC-targeted vaccine as a novel approach for cutaneous leishmaniasis, an increasing public health concern that has no currently available effective treatment.


Assuntos
Antígenos de Protozoários/imunologia , Células Dendríticas/imunologia , Leishmania major/imunologia , Leishmaniose Cutânea/imunologia , Proteínas de Protozoários/imunologia , Células Th1/imunologia , Animais , Proliferação de Células , Células Dendríticas/parasitologia , Feminino , Imunização , Interferon gama/metabolismo , Leishmaniose Cutânea/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fator de Necrose Tumoral alfa/metabolismo
13.
J Clin Invest ; 123(2): 844-54, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23298832

RESUMO

Harnessing DCs for immunotherapies in vivo requires the elucidation of the physiological role of distinct DC populations. Migratory DCs traffic from peripheral tissues to draining lymph nodes charged with tissue self antigens. We hypothesized that these DC populations have a specialized role in the maintenance of peripheral tolerance, specifically, to generate suppressive Foxp3+ Tregs. To examine the differential capacity of migratory DCs versus blood-derived lymphoid-resident DCs for Treg generation in vivo, we targeted a self antigen, myelin oligodendrocyte glycoprotein, using antibodies against cell surface receptors differentially expressed in these DC populations. Using this approach together with mouse models that lack specific DC populations, we found that migratory DCs have a superior ability to generate Tregs in vivo, which in turn drastically improve the outcome of experimental autoimmune encephalomyelitis. These results provide a rationale for the development of novel therapies targeting migratory DCs for the treatment of autoimmune diseases.


Assuntos
Células Dendríticas/imunologia , Tolerância Periférica/imunologia , Animais , Antígenos CD/imunologia , Antígenos de Superfície/imunologia , Autoantígenos , Movimento Celular/imunologia , Células Dendríticas/classificação , Células Dendríticas/fisiologia , Encefalomielite Autoimune Experimental/imunologia , Fatores de Transcrição Forkhead/metabolismo , Células de Langerhans/imunologia , Células de Langerhans/fisiologia , Lectinas Tipo C/antagonistas & inibidores , Lectinas Tipo C/deficiência , Lectinas Tipo C/genética , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/antagonistas & inibidores , Lectinas de Ligação a Manose/imunologia , Camundongos , Camundongos Knockout , Antígenos de Histocompatibilidade Menor , Glicoproteína Mielina-Oligodendrócito/imunologia , Tolerância Periférica/fisiologia , Receptores de Superfície Celular/antagonistas & inibidores , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/deficiência , Receptores Imunológicos/genética , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia
14.
J Immunol ; 188(3): 1147-55, 2012 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22210914

RESUMO

Members of the triggering expressed on myeloid cells (Trem) receptor family fine-tune inflammatory responses. We previously identified one of these receptors, called Treml4, expressed mainly in the spleen, as well as at high levels by CD8α(+) dendritic cells and macrophages. Like other Trem family members, Treml4 has an Ig-like extracellular domain and a short cytoplasmic tail that associates with the adaptor DAP12. To follow up on our initial results that Treml4-Fc fusion proteins bind necrotic cells, we generated a knockout mouse to assess the role of Treml4 in the uptake and presentation of dying cells in vivo. Loss of Treml4 expression did not impair uptake of dying cells by CD8α(+) dendritic cells or cross-presentation of cell-associated Ag to CD8(+) T cells, suggesting overlapping function between Treml4 and other receptors in vivo. To further investigate Treml4 function, we took advantage of a newly generated mAb against Treml4 and engineered its H chain to express three different Ags (i.e., OVA, HIV GAGp24, and the extracellular domain of the breast cancer protein HER2). OVA directed to Treml4 was efficiently presented to CD8(+) and CD4(+) T cells in vivo. Anti-Treml4-GAGp24 mAbs, given along with a maturation stimulus, induced Th1 Ag-specific responses that were not observed in Treml4 knockout mice. Also, HER2 targeting using anti-Treml4 mAbs elicited combined CD4(+) and CD8(+) T cell immunity, and both T cells participated in resistance to a transplantable tumor. Therefore, Treml4 participates in Ag presentation in vivo, and targeting Ags with anti-Treml4 Abs enhances immunization of otherwise naive mice.


Assuntos
Apresentação de Antígeno/imunologia , Receptor ErbB-2/imunologia , Receptores Imunológicos/imunologia , Linfócitos T/imunologia , Animais , Anticorpos Monoclonais/farmacologia , Imunidade Celular , Imunização , Camundongos , Camundongos Knockout , Substâncias Protetoras , Engenharia de Proteínas
15.
Proc Natl Acad Sci U S A ; 108(6): 2384-9, 2011 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-21262813

RESUMO

Improved protein-based vaccines should facilitate the goal of effective vaccines against HIV and other pathogens. With respect to T cells, the efficiency of immunization, or "immunogenicity," is improved by targeting vaccine proteins to maturing dendritic cells (DCs) within mAbs to DC receptors. Here, we compared the capacity of Langerin/CD207, DEC205/CD205, and Clec9A receptors, each expressed on the CD8(+) DC subset in mice, to bring about immunization of microbial-specific T cells from the polyclonal repertoire, using HIV gag-p24 protein as an antigen. α-Langerin mAb targeted splenic CD8(+) DCs selectively in vivo, whereas α-DEC205 and α-Clec9A mAbs targeted additional cell types. When the mAb heavy chains were engineered to express gag-p24, the α-Langerin, α-DEC205, and α-Clec9A fusion mAbs given along with a maturation stimulus induced comparable levels of gag-specific T helper 1 (Th1) and CD8(+) T cells in BALB/c × C57BL/6 F1 mice. These immune T cells were more numerous than targeting the CD8(-) DC subset with α-DCIR2-gag-p24. In an in vivo assay in which gag-primed T cells were used to report the early stages of T-cell responses, α-Langerin, α-DEC205, and α-Clec9A also mediated cross-presentation to primed CD8(+) T cells if, in parallel to antigen uptake, the DCs were stimulated with α-CD40. α-Langerin, α-DEC205, and α-Clec9A targeting greatly enhanced T-cell immunization relative to nonbinding control mAb or nontargeted HIV gag-p24 protein. Therefore, when the appropriate subset of DCs is targeted with a vaccine protein, several different receptors expressed by that subset are able to initiate combined Th1 and CD8(+) immunity.


Assuntos
Vacinas contra a AIDS/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD/imunologia , Antígenos de Superfície/imunologia , Antígenos CD8 , Linfócitos T CD8-Positivos/imunologia , Células Dendríticas/imunologia , Proteína do Núcleo p24 do HIV/imunologia , Lectinas Tipo C/imunologia , Lectinas de Ligação a Manose/imunologia , Receptores de Superfície Celular/imunologia , Receptores Imunológicos/imunologia , Células Th1/imunologia , Vacinas contra a AIDS/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Proteína do Núcleo p24 do HIV/farmacologia , Imunidade Celular/efeitos dos fármacos , Imunidade Celular/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Antígenos de Histocompatibilidade Menor
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...