Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2213815120, 2023 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307438

RESUMO

Record-breaking summer forest fires have become a regular occurrence in California. Observations indicate a fivefold increase in summer burned area (BA) in forests in northern and central California during 1996 to 2021 relative to 1971 to 1995. While the higher temperature and increased dryness have been suggested to be the leading causes of increased BA, the extent to which BA changes are due to natural variability or anthropogenic climate change remains unresolved. Here, we develop a climate-driven model of summer BA evolution in California and combine it with natural-only and historical climate simulations to assess the importance of anthropogenic climate change on increased BA. Our results indicate that nearly all the observed increase in BA is due to anthropogenic climate change as historical model simulations accounting for anthropogenic forcing yield 172% (range 84 to 310%) more area burned than simulations with natural forcing only. We detect the signal of combined historical forcing on the observed BA emerging in 2001 with no detectable influence of the natural forcing alone. In addition, even when considering fuel limitations from fire-fuel feedbacks, a 3 to 52% increase in BA relative to the last decades is expected in the next decades (2031 to 2050), highlighting the need for proactive adaptations.

2.
Sci Rep ; 13(1): 1394, 2023 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-36697487

RESUMO

For centuries, scientists have observed nature to understand the laws that govern the physical world. The traditional process of turning observations into physical understanding is slow. Imperfect models are constructed and tested to explain relationships in data. Powerful new algorithms can enable computers to learn physics by observing images and videos. Inspired by this idea, instead of training machine learning models using physical quantities, we used images, that is, pixel information. For this work, and as a proof of concept, the physics of interest are wind-driven spatial patterns. These phenomena include features in Aeolian dunes and volcanic ash deposition, wildfire smoke, and air pollution plumes. We use computer model simulations of spatial deposition patterns to approximate images from a hypothetical imaging device whose outputs are red, green, and blue (RGB) color images with channel values ranging from 0 to 255. In this paper, we explore deep convolutional neural network-based autoencoders to exploit relationships in wind-driven spatial patterns, which commonly occur in geosciences, and reduce their dimensionality. Reducing the data dimension size with an encoder enables training deep, fully connected neural network models linking geographic and meteorological scalar input quantities to the encoded space. Once this is achieved, full spatial patterns are reconstructed using the decoder. We demonstrate this approach on images of spatial deposition from a pollution source, where the encoder compresses the dimensionality to 0.02% of the original size, and the full predictive model performance on test data achieves a normalized root mean squared error of 8%, a figure of merit in space of 94% and a precision-recall area under the curve of 0.93.

3.
J Environ Radioact ; 192: 667-686, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29525108

RESUMO

After performing a first multi-model exercise in 2015 a comprehensive and technically more demanding atmospheric transport modelling challenge was organized in 2016. Release data were provided by the Australian Nuclear Science and Technology Organization radiopharmaceutical facility in Sydney (Australia) for a one month period. Measured samples for the same time frame were gathered from six International Monitoring System stations in the Southern Hemisphere with distances to the source ranging between 680 (Melbourne) and about 17,000 km (Tristan da Cunha). Participants were prompted to work with unit emissions in pre-defined emission intervals (daily, half-daily, 3-hourly and hourly emission segment lengths) and in order to perform a blind test actual emission values were not provided to them. Despite the quite different settings of the two atmospheric transport modelling challenges there is common evidence that for long-range atmospheric transport using temporally highly resolved emissions and highly space-resolved meteorological input fields has no significant advantage compared to using lower resolved ones. As well an uncertainty of up to 20% in the daily stack emission data turns out to be acceptable for the purpose of a study like this. Model performance at individual stations is quite diverse depending largely on successfully capturing boundary layer processes. No single model-meteorology combination performs best for all stations. Moreover, the stations statistics do not depend on the distance between the source and the individual stations. Finally, it became more evident how future exercises need to be designed. Set-up parameters like the meteorological driver or the output grid resolution should be pre-scribed in order to enhance diversity as well as comparability among model runs.


Assuntos
Poluentes Radioativos do Ar/análise , Monitoramento de Radiação , Radioisótopos de Xenônio/análise , Austrália , Cooperação Internacional
4.
Nat Commun ; 8(1): 1947, 2017 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-29209024

RESUMO

From 2012 to 2016, California experienced one of the worst droughts since the start of observational records. As in previous dry periods, precipitation-inducing winter storms were steered away from California by a persistent atmospheric ridging system in the North Pacific. Here we identify a new link between Arctic sea-ice loss and the North Pacific geopotential ridge development. In a two-step teleconnection, sea-ice changes lead to reorganization of tropical convection that in turn triggers an anticyclonic response over the North Pacific, resulting in significant drying over California. These findings suggest that the ability of climate models to accurately estimate future precipitation changes over California is also linked to the fidelity with which future sea-ice changes are simulated. We conclude that sea-ice loss of the magnitude expected in the next decades could substantially impact California's precipitation, thus highlighting another mechanism by which human-caused climate change could exacerbate future California droughts.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...