Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chromatogr A ; 1218(37): 6369-78, 2011 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-21802688

RESUMO

In the field of nuclear waste management, the 6,6'-bis-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-benzo[1,2,4]-triazin-3-yl)-[2,2']-bipyridine (CyMe(4)BTBP) is a polycyclic N-based molecule eligible to remove actinides from spent nuclear fuel by liquid-liquid extraction processes. In such processes, the organic phase containing the extracting molecules will undergo hydrolysis and radiolysis, involving degradation products. The purpose of this work was to develop a normal phase chromatography (NP-HPLC) coupled to atmospherical pressure chemical ionisation-mass spectrometry (APCI-MS) method to separate and identify degradation products of CyMe(4)BTBP dissolved in octanol, submitted to HNO(3) hydrolysis. 1 mol L(-1) HNO(3) hydrolysis conditions were used regarding the selective actinides extraction (SANEX) process, while 3 mol L(-1) HNO(3) conditions were applied for the group actinide extraction (GANEX) process. The first step consisted in optimizing the chromatographic separation conditions using a diode array detection (DAD). Retention behavior of a non hydrolyzed mixture of N,N'-dimethyl-N,N'-dioctyl-hexyloxyethyl-malonamide (DMDOHEMA), a malonamide used in the SANEX process to increase the kinetic of extraction, and CyMe(4)BTBP were investigated on diol-, cyano-, and amino-bonded stationary phases using different mobile phase compositions. These latter were hexane with different polar modifiers, i.e. dioxane, isopropanol, ethanol and methylene chloride/methanol. The different retention processes in NP-HPLC were highlighted when using various stationary and mobile phases. The second step was the setting-up of the NP-HPLC-APCI-MS coupling and the use of the low-energy collision dissociation tandem mass spectrometry (CID-MS/MS) of the precursor protonated molecules that allowed the separation and the characterization of the main hydrolytic CyMe(4)BTBP degradation product under a 3 mol L(-1) HNO(3) concentration. Investigation of the CID-MS/MS fragmentation pattern was used to suggest the potential ways leading to this hydrolysis degradation product. This NP-HPLC-APCI-MS method development is described for the first time for the CyMe(4)BTBP and should provide separation methods regarding the analysis of polycyclic N-based extracting molecules and more generally for the investigation of the organic phase coming from liquid-liquid extraction processes used in nuclear fuel reprocessing.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas/métodos , Piridinas/química , Resíduos Radioativos , Triazinas/química , 2,2'-Dipiridil/química , Álcoois/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...