Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Talanta ; 195: 204-214, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30625533

RESUMO

Essential oils are natural products extracted from plants that present volatile and thermolabile characteristics. Essential oils have become products of interest in many fields, including the pharmaceutical, due to their medicinal properties. In recent years, the interest in the encapsulation of essential oils in nanometric systems for therapeutic approaches has risen and a number of studies have been published. This review intended to set a panorama on the research within this field through a data survey and identify the organic nanostructured systems, the preparation techniques and analytical quantification methods employed. Many techniques used to prepare nanosystems loaded with essential oils involve heating or solvent evaporation steps that may damage their composition. In this context, the quantification of essential oil on the final nanosystems is impaired. However, in more than half of the research papers, the quantification is ignored or an indirect quantification is performed, assuming no volatilisation upon formulation processes. Analytical methods used to assess essential oil encapsulation efficiency were discussed regarding their suitability.

2.
J Chromatogr A ; 1564: 163-175, 2018 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-29910087

RESUMO

Aniba canelilla (H.B.K.) Mez is an aromatic plant from the Amazon region whose essential oil has 1-nitro-2-phenylethane (NP) and methyleugenol (ME) as major compounds. Despite of the scientifically proven antifungal and anti-inflammatory activities for these compounds, there is no report up to date about the topical permeation or quantification of NP and ME on skin samples. The aim of this study was the validation of an optimized bioanalytical method by solid-phase microextraction in headspace mode in gas chromatograph with flame ionization detector (HS-SPME-GC-FID) for the determination of NP and ME from the oil in different samples from permeation study, such as porcine ear skin (PES) layers (stratum corneum, epidermis and dermis) and receptor fluid (RF). For this propose polydimethylsiloxane fibers (100 µm) were used and HS-SPME extraction condition consisted of 53 °C, 21 min, and 5% w.v-1 NaCl addition. The wide range of the calibration curve (2.08-207.87 µg mL-1 for NP and 0.40-40.41 µg mL-1 for ME), the presence of matrix interferences and the intrinsic characteristics of HS-SPME required a data linearization using Log10. Thereby, data and the gained results presented homoscedasticity, normalization of residues and adequate linearity (r2 > 0.99) and accuracy for both compounds. In order to verify the applicability of the validated method, the HS-SPME-GC-FID procedure was performed to determine the amount of NP and ME permeated and retained in samples after Franz diffusion cell study from different dosages (20, 100 and 200 µL) of A. canelilla oil. Compounds permeation showed a progressive increase and penetration dependence based on the dosage applied. Furthermore, retention was in order receptor fluid >> dermis >> epidermis >> stratum corneum for both compounds, suggesting NP and ME could penetrate deep tissue, probably due to the partition coefficient, mass, size, and solubility of these compounds. In conclusion, the proposed method by HS-SPME-GC-FID to quantify 1-nitro-2-phenylethane and methyleugenol from Aniba canelilla essential oil was able to determine selectively, precisely and accurately these main compounds in skin permeation samples.


Assuntos
Derivados de Benzeno/análise , Cromatografia Gasosa/métodos , Eugenol/análogos & derivados , Lauraceae/química , Óleos Voláteis/análise , Absorção Cutânea , Microextração em Fase Sólida/métodos , Análise de Variância , Animais , Derivados de Benzeno/química , Eugenol/análise , Eugenol/química , Limite de Detecção , Óleos Voláteis/química , Sus scrofa
3.
AAPS PharmSciTech ; 19(2): 522-530, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-28828597

RESUMO

Copaiba oil is used as a popular medicine in the Amazonian forest region, especially due to its anti-inflammatory properties. In this paper, we describe the formulation of hydrogel containing copaiba oil nanoemulsions (with positive and negative charges), its skin permeation, and its anti-inflammatory activity in two in vivo models: mouse ear edema and rat paw edema. Three hydrogels were tested (Carbopol®, hydroxyethylcellulose and chitosan), but only Carbopol® and hydroxyethylcellulose hydrogels presented good stability and did not interfere with the nanoemulsions droplet size and polydispersity index. In skin permeation assay, both formulations, positively charged nanoemulsion (PCN) and negatively charged nanoemulsion (NCN), presented a high retention in epidermis (9.76 ± 2.65 µg/g and 7.91 ± 2.46 µg/cm2, respectively) followed by a smaller retention in the dermis (2.43 ± 0.91 and 1.95 ± 0.56 µg/cm2, respectively). They also presented permeation to the receptor fluid (0.67 ± 0.22 and 1.80 ± 0.85 µg/cm2, respectively). In addition, anti-inflammatory effect was observed to NCN and PCN with edema inhibitions of 69 and 67% in mouse ear edema and 32 and 72% in rat paw edema, respectively. Histological cuts showed the decrease of inflammatory factors, such as dermis and epidermis hyperplasia and inflammatory cells infiltration, confirming the anti-inflammatory effect from both copaiba oil nanoemulsions incorporated in hydrogel.


Assuntos
Anti-Inflamatórios/administração & dosagem , Fabaceae/química , Óleos de Plantas/administração & dosagem , Animais , Anti-Inflamatórios/farmacocinética , Anti-Inflamatórios/uso terapêutico , Edema/tratamento farmacológico , Emulsões , Hidrogéis , Masculino , Camundongos , Nanopartículas , Óleos de Plantas/farmacocinética , Óleos de Plantas/uso terapêutico , Ratos , Pele/metabolismo
4.
J Pharm Biomed Anal ; 104: 144-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25499655

RESUMO

Copaiba oil is largely used in the Amazonian region for the treatment of inflammation, and recent studies demonstrated that one of the major components of the oil, ß-caryophyllene (CAR), is a potent anti-inflammatory. The nanoemulsification of this oleoresin, which has unctuous character, converts it in a more acceptable hydrophilic formulation and may improve CAR penetration through the skin due to the small droplet size and the high contact surface afforded by the nanoemulsions. This paper describes the validation of a novel, sensitive, practical and solvent free method that uses gas chromatography in headspace mode coupled with mass spectrometry to evaluate the skin permeation/retention of CAR from the crude copaiba oil and its nanoemulsion. Our results show that the bioanalytic method was fully validated, demonstrating linearity (r(2)>0.99), specificity (no peaks co-eluting with CAR retention time), precision (RSD<15%) and accuracy (recovery>90%) within the accepted parameters and that the copaiba oil nanoemulsion presented a better skin penetration compared to the crude oil, with CAR achieving the most profound layer of the skin, the dermis.


Assuntos
Anti-Inflamatórios/análise , Óleos de Plantas/química , Sesquiterpenos/análise , Pele/química , Animais , Anti-Inflamatórios/farmacocinética , Fabaceae/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Limite de Detecção , Permeabilidade , Sesquiterpenos Policíclicos , Sensibilidade e Especificidade , Sesquiterpenos/farmacocinética , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...