Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Direct ; 7(6): e497, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37284466

RESUMO

Salinity is increasingly considered as a major environmental issue, which threatens agricultural production by decreasing yield traits of crops. Seed priming is a useful and cost-effective technique to alleviate the negative effects of salinity and to enable a fast and uniform germination. In this context, we quantified the effects of priming with gibberellic acid (GP), calcium chloride (CP), and mannitol (MP) on seed germination of three bread wheat cultivars and investigated their response when grown at high salinity conditions (200 mM NaCl). Salt exposure strongly repressed seed imbibition and germination potential and extended germination time, whereas priming enhanced uniformity and seed vigor. Seed preconditioning alleviated the germination disruption caused by salt stress to varying degrees. Priming mitigating effect was agent-dependent with regard to water status (CP and MP), ionic imbalance (CP), and seed reserve mobilization (GP). Na+ accumulation in seedling tissues significantly impaired carbohydrate and protein mobilization by inhibiting amylase and proteases activities but had lesser effects on primed seeds. CP attenuated ionic imbalance by limiting sodium accumulation. Gibberellic acid was the most effective priming treatment for promoting the germination of wheat seeds under salt stress. Moreover, genotypic differences in wheat response to salinity stress were observed between varieties used in this study. Ardito, the oldest variety, seems to tolerate better salinity in priming-free conditions; Aubusson resulted the most salt-sensitive cultivar but showed a high germination recovery under priming conditions; Bologna showed an intermediate behavior.

2.
Planta ; 256(6): 118, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376619

RESUMO

MAIN CONCLUSIONS: C. campestris parasitisation increases internal host defences at the expense of environmentally directed ones in the host species A. campestris, thus limiting plant defence against progressive parasitisation. Cuscuta campestris Yunck is a holoparasitic species that parasitises wild species and crops. Among their hosts, Artemisia campestris subsp. variabilis (Ten.) Greuter is significantly affected in natural ecosystems. Limited information is available on the host recognition mechanism and there are no data on the interactions between these species and the effects on the primary and specialised metabolism in response to parasitisation. The research aims at evaluating the effect of host-parasite interactions, through a GC-MS untargeted metabolomic analysis, chlorophyll a fluorescence, ionomic and δ13C measurements, as well as volatile organic compound (VOC) fingerprint in A. campestris leaves collected in natural environment. C. campestris parasitisation altered plant water status, forcing stomatal opening, stimulating plant transpiration, and inducing physical damages to the host antenna complex, thus reducing the efficiency of its photosynthetic machinery. Untargeted-metabolomics analysis highlighted that the parasitisation significantly perturbed the amino acids and sugar metabolism, inducing an increase in the production of osmoprotectants, which generally accumulate in plants as a protective strategy against oxidative stress. Notably, VOCs analysis highlighted a reduction in sesquiterpenoids and an increase in monoterpenoids levels; involved in plant defence and host recognition, respectively. Moreover, C. campestris induced in the host a reduction in 3-hexenyl-acetate, a metabolite with known repellent activity against Cuscuta spp. We offer evidences that C. campestris parasitisation increases internal host defences via primary metabolites at the expense of more effective defensive compounds (secondary metabolites), thus limiting A. campestris defence against progressive parasitisation.


Assuntos
Artemisia , Cuscuta , Cuscuta/metabolismo , Ecossistema , Clorofila A/metabolismo , Fotossíntese
3.
Plants (Basel) ; 10(4)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33923918

RESUMO

Two rice accessions, Capataz and Beirao, contrasting for cadmium (Cd) tolerance and root retention, were exposed to a broad range of Cd concentrations (0.01, 0.1, and 1 µM) and analyzed for their potential capacity to chelate, compartmentalize, and translocate Cd to gain information about the relative contribution of these processes in determining the different pathways of Cd distribution along the plants. In Capataz, Cd root retention increased with the external Cd concentration, while in Beirao it resulted independent of Cd availability and significantly higher than in Capataz at the lowest Cd concentrations analyzed. Analysis of thiol accumulation in the roots revealed that the different amounts of these compounds in Capataz and Beirao, as well as the expression levels of genes involved in phytochelatin biosynthesis and direct Cd sequestration into the vacuoles of the root cells, were not related to the capacity of the accessions to trap the metal into the roots. Interestingly, the relative transcript abundance of OsHMA2, a gene controlling root-to-shoot Cd/Zn translocation, was not influenced by Cd exposure in Capataz and progressively increased in Beirao with the external Cd concentration, suggesting that activity of the OsHMA2 transporter may differentially limit root-to-shoot Cd/Zn translocation in Capataz and Beirao.

4.
Forensic Sci Int ; 292: 23-26, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30268034

RESUMO

INTRODUCTION: In a previous work, we wanted to evaluate if the histochemical determination of lead in Gunshot Residues (GSR) on firearm wounds could be misled due to possible environmental contamination produced by heavy metals and, in particular, by lead. The Sodium Rhodizonate test and its confirmation test with 5% HCl Sodium Rhodizonate resulted to be negative and therefore we wanted to verify if these techniques were sensible enough in order to evaluate this element. We have assessed, on these same samples, a more sensitive technique, as inductive coupled plasma mass spectrometry (ICP-MS) is. This technique is able to detect elements in solution at concentrations as low as 10-15gL-1. MATERIALS AND METHODS: Skin samples taken from two groups of victims, whose cause of death was not related to gunshot wounds were analyzed using ICP-MS: group A included 25 corpses found in open spaces after a long time; group B included 16 corpses exhumed after a period of 11 years. As a positive control group we used skin samples from two subjects that had died due to firearm wounds: as a negative control group we used three different types of plain paraffin slides without included biological material. RESULTS: At the analysis by ICP-MS, the evaluation of the samples belonging to groups A, B and for the negative control groups resulted to be negative for traces of lead (Pb), barium (Ba) and antimony (Sb). On the other hand, high concentrations of GSR could be found in the positive control group were victims died for firearm wounds. CONCLUSIONS: On these basis, we can state that environmental Pb does not contaminate cadavers exposed to open air nor those buried in soil, as confirmed using to ICP-MS technique. Sodium Rhodizonate and 5% HCl Sodium Rhodizonate confirmation test have therefore a high sensitivity, highlighting GSRs, for the diagnosis of death caused by firearm wounds.


Assuntos
Exposição Ambiental , Espectrometria de Massas/métodos , Pele/química , Ferimentos por Arma de Fogo/diagnóstico , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Antimônio/análise , Bário/análise , Cadáver , Estudos de Casos e Controles , Cicloexanonas , Feminino , Medicina Legal , Humanos , Chumbo/análise , Masculino , Pessoa de Meia-Idade , Adulto Jovem
5.
Biomed Pharmacother ; 108: 111-118, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30218855

RESUMO

In this study, the in vitro stability of cisplatin (CisPt) and cationic platinum(II)-complex (caPt(II)-complex) and their in vitro activity (antiproliferative and anti-angiogenic properties) were investigated against three aggressive human tumor cell lines. caPt(II)-complex shown a high stability until 9 days of treatment and displayed a significant and higher activity than CisPt against both NCI-H28 mesothelioma (19.37 ± 9.57 µM versus 34.66 ± 7.65 µM for CisPt) and U87 MG glioblastoma (19.85 ± 0.97 µM versus 54.14 ± 3.19 for CisPt). Mesenchymal Stromal Cells (AT-MSCs) showed a significant different sensitivity (IC50 = 71.9 ± 15.1 µM for caPt(II)-complex and 8.7 ± 4.5 µM for CisPt) to the antiproliferative activity of caPt(II)-complex and CisPt. The ability of MSCs to uptake both the drugs in a similar amount of 2.49 pM /cell, suggested a possible development of new therapies based on cell mediated drug delivery.


Assuntos
Cisplatino/farmacologia , Células-Tronco Mesenquimais/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Platina/farmacologia , Tecido Adiposo/citologia , Adulto , Antineoplásicos/farmacologia , Cátions , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Células-Tronco Mesenquimais/efeitos dos fármacos , Neovascularização Fisiológica/efeitos dos fármacos , Temperatura
6.
Front Plant Sci ; 8: 854, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28588602

RESUMO

The processes involved in cadmium detoxification in plants deeply affect sulfate uptake and thiol homeostasis and generate increases in the plant nutritional request for sulfur. Here, we present an analysis of the dependence of Arabidopsis growth on the concentration of sulfate in the growing medium with the aim of providing evidence on how plants optimize growth at a given sulfate availability. Results revealed that short-term (72 h) exposure to a broad range of Cd concentrations (0.1, 1, and 10 µM) inhibited plant growth but did not produce any significant effects on the growth pattern of both shoots and roots in relation to the external sulfate. Conversely, long-term (22 days) exposure to 0.1 µM Cd significantly changed the pattern of fresh weight accumulation of the shoots in relation to the external sulfate, without affecting that of the roots, although their growth was severely inhibited by Cd. Moreover, under long-term exposure to Cd, increasing the sulfate external concentration up to the critical value progressively reduced the inhibitory effects exerted by Cd on shoot growth, indicating the existence of sulfate-dependent adaptive responses protecting the shoot tissues against Cd injury. Transcriptional induction of the high-affinity sulfate transporter genes (SULTR1; 1 and SULTR1; 2) involved in sulfate uptake by roots was a common adaptive response to both short- and long-term exposure to Cd. Such a response was closely related to the total amount of non-protein thiols accumulated by a single plant under short-term exposure to Cd, but did not showed any clear relation with thiols under long-term exposure to Cd. In this last condition, Cd exposure did not change the level of non-protein thiols per plant and thus did not alter the nutritional need for sulfur. In conclusion, our results indicate that long term-exposure to Cd, although it induces sulfate uptake, decreases the capacity of the Arabidopsis roots to efficiently absorb the sulfate ions available in the growing medium making the adaptive response of SULTR1; 1 and SULTR1; 2 "per se" not enough to optimize the growth at sulfate external concentrations lower than the critical value.

7.
Bioorg Med Chem ; 25(6): 1907-1913, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28254366

RESUMO

The development and the synthesis of cationic platinum(II) complexes were realized and their cytotoxic activity was tested on triple negative breast cancer MDA-MB-231 cell line and in two cell lines poorly responsive to cisplatin (DLD-1 and MCF-7). The complex 2c resulted the most potent cytotoxic agent in MDA-MB-231 (IC50=61.9µM) and more effective than cisplatin on both DLD-1 (IC50=57.4µM) and MCF-7 (IC50=79.9µM) cell lines. 2c showed different cellular uptake and pharmacodynamic properties than cisplatin, interfering with the progression of the M phase of the cell cycle. Thus, 2c represents a lead compound of a new class of cytotoxic agents with promising antitumor activity.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/química , Compostos Organoplatínicos/farmacologia , Neoplasias de Mama Triplo Negativas/patologia , Antineoplásicos/química , Divisão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Avaliação Pré-Clínica de Medicamentos , Humanos , Compostos Organoplatínicos/química
8.
Biometals ; 30(3): 355-365, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28337565

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal disorder with unknown etiology, in which genetic and environmental factors interplay to determine the onset and the course of the disease. Exposure to toxic metals has been proposed to be involved in the etiology of the disease either through a direct damage or by promoting oxidative stress. In this study we evaluated the concentration of a panel of metals in serum and whole blood of a small group of sporadic patients, all living in a defined geographical area, for which acid mine drainage has been reported. ALS prevalence in this area is higher than in the rest of Italy. Results were analyzed with software based on artificial neural networks. High concentrations of metals (in particular Se, Mn and Al) were associated with the disease group. Arsenic serum concentration resulted lower in ALS patients, but it positively correlated with disease duration. Comet assay was performed to evaluate endogenous DNA damage that resulted not different between patients and controls. Up to now only few studies considered geographically well-defined clusters of ALS patients. Common geographical origin among patients and controls gave us the chance to perform metallomic investigations under comparable conditions of environmental exposure. Elaboration of these data with software based on machine learning processes has the potential to be extremely useful to gain a comprehensive view of the complex interactions eventually leading to disease, even in a small number of subjects.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Oligoelementos/sangue , Idoso , Esclerose Lateral Amiotrófica/diagnóstico , Feminino , Humanos , Itália , Masculino , Pessoa de Meia-Idade
9.
Bioresour Technol ; 237: 240-248, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28341382

RESUMO

Spirulina was cultivated in cathodic compartments of photo-microbial fuel cells (P-MFC). Anodic compartments were fed with swine-farming wastewater, enriched with sodium acetate (2.34gCODL-1). Photosynthetic oxygen generation rates were sufficient to sustain cathodic oxygen reduction, significantly improving P-MFC electrochemical performances, as compared to water-cathode control experiments. Power densities (0.8-1Wm-2) approached those of air-cathode MFCs, run as control. COD was efficiently removed and only negligible fractions leaked to the cathodic chamber. Spirulina growth rates were comparable to those of control (MFC-free) cultures, while pH was significantly (0.5-1unit) higher in P-MFCs, due to cathodic reactions. Alkaliphilic photosynthetic microorganisms like Spirulina might take advantage of these selective conditions. Electro-migration along with diffusion to the cathodic compartment concurred for the recovery of most nutrients. Only P and Mg were retained in the anodic chamber. A deeper look into electro-osmotic mechanisms should be addressed in future studies.


Assuntos
Fontes de Energia Bioelétrica , Fotossíntese , Águas Residuárias , Animais , Eletrodos , Oxigênio , Suínos
10.
Rice (N Y) ; 9(1): 16, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27068924

RESUMO

BACKGROUND: Among cereals, rice has a genetic propensity to accumulate high levels of cadmium (Cd) in grains. Xylem-mediated root-to-shoot translocation rather than root uptake has been suggested as the main physiological factor accounting for the genotypic variation observed in Cd accumulation in shoots and grains. Several evidence indicate OsHMA2 - a putative zinc (Zn) transporter - as the main candidate protein that could be involved in mediating Cd- and Zn-xylem loading in rice. However, the specific interactions between Zn and Cd in rice often appear anomalous if compared to those observed in other staple crops, suggesting that root-to-shoot Cd translocation process could be more complex than previously thought. In this study we performed a complete set of competition experiments with Zn and Cd in order to analyze their possible interactions and reciprocal effects at the root-to-shoot translocation level. RESULTS: The competition analysis revealed the lack of a full reciprocity when considering the effect of Cd on Zn accumulation, and vice versa, since the accumulation of Zn in the shoots was progressively inhibited by Cd increases, whereas that of Cd was only partially impaired by Zn. Such behaviors were probably dependent on Cd-xylem loading mechanisms, as suggested by: i) the analysis of Zn and Cd content in the xylem sap performed in relation to the concentration of the two metals in the mobile fractions of the roots; ii) the analysis of the systemic movement of (107)Cd in short term experiments performed using a positron-emitting tracer imaging system (PETIS). CONCLUSIONS: Our results suggest that at least two pathways may mediate root-to-shoot Cd translocation in rice. The former could involve OsHMA2 as Zn(2+)/Cd(2+) xylem loader, whereas the latter appears to involve a Zn-insensitive system that still needs to be identified.

11.
Ecotoxicol Environ Saf ; 126: 122-128, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26745003

RESUMO

Citrate, malate and histidine have been involved in many processes including metal tolerance and accumulation in plants. These molecules have been frequently reported to be the potential nickel chelators, which most likely facilitate metal transport through xylem. In this context, we assess here, the relationship between organics acids and histidine content and nickel accumulation in Mesembryanthemum crystallinum and Brassica juncea grown in hydroponic media added with 25, 50 and 100 µM NiCl2. Results showed that M. crystallinum is relatively more tolerant to Ni toxicity than B. juncea. For both species, xylem transport rate of Ni increased with increasing Ni supply. A positive correlation was established between nickel and citrate concentrations in the xylem sap. In the shoot of B. juncea, citric and malic acids concentrations were significantly higher than in the shoot of M. crystallinum. Also, the shoots and roots of B. juncea accumulated much more histidine. In contrast, a higher root citrate concentration was observed in M. crystallinum. These findings suggest a specific involvement of malic and citric acid in Ni translocation and accumulation in M. crystallinum and B. juncea. The high citrate and histidine accumulation especially at 100µM NiCl2, in the roots of M. crystallinum might be among the important factors associated with the tolerance of this halophyte to toxic Ni levels.


Assuntos
Ácido Cítrico/metabolismo , Histidina/metabolismo , Malatos/metabolismo , Mesembryanthemum/metabolismo , Mostardeira/metabolismo , Níquel/farmacocinética , Transporte Biológico/fisiologia , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Plantas Tolerantes a Sal , Xilema
12.
J Plant Physiol ; 171(17): 1634-44, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25171515

RESUMO

Saline soils often constitute sites of accumulation of industrial and urban wastes contaminated by heavy metals. Halophytes, i.e. native salt-tolerant species, could be more suitable for heavy metal phytoextraction from saline areas than glycophytes, most frequently used so far. In the framework of this approach, we assess here the Ni phytoextraction potential in the halophyte Mesembryanthemum crystallinum compared with the model species Brassica juncea. Plants were hydroponically maintained for 21 days at 0, 25, 50, and 100µM NiCl2. Nickel addition significantly restricted the growth activity of both species, and to a higher extent in M. crystallinum, which did not, however, show Ni-related toxicity symptoms on leaves. Interestingly, photosynthesis activity, chlorophyll content and photosystem II integrity assessed by chlorophyll fluorescence were less impacted in Ni-treated M. crystallinum as compared to B. juncea. The plant mineral nutrition was differently affected by NiCl2 exposure depending on the element, the species investigated and even the organ. In both species, roots were the preferential sites of Ni(2+) accumulation, but the fraction translocated to shoots was higher in B. juncea than in M. crystallinum. The relatively good tolerance of M. crystallinum to Ni suggests that this halophyte species could be used in the phytoextraction of moderately polluted saline soils.


Assuntos
Mesembryanthemum/metabolismo , Mostardeira/metabolismo , Níquel/metabolismo , Fotossíntese , Biodegradação Ambiental , Clorofila/metabolismo , Metais/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Transpiração Vegetal , Plantas Tolerantes a Sal , Poluentes do Solo
13.
BMC Plant Biol ; 14: 132, 2014 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-24884748

RESUMO

BACKGROUND: Cadmium (Cd) exposure and sulfate limitation induce root sulfate uptake to meet the metabolic demand for reduced sulfur. Although these responses are well studied, some aspects are still an object of debate, since little is known about the molecular mechanisms by which changes in sulfate availability and sulfur metabolic demand are perceived and transduced into changes in the expression of the high-affinity sulfate transporters of the roots. The analysis of the natural variation occurring in species with complex and highly redundant genome could provide precious information to better understand the topic, because of the possible retention of mutations in the sulfate transporter genes. RESULTS: The analysis of plant sulfur nutritional status and root sulfate uptake performed on plants of Brassica juncea - a naturally occurring allotetraploid species - grown either under Cd exposure or sulfate limitation showed that both these conditions increased root sulfate uptake capacity but they caused quite dissimilar nutritional states, as indicated by changes in the levels of nonprotein thiols, glutathione and sulfate of both roots and shoots. Such behaviors were related to the general accumulation of the transcripts of the transporters involved in root sulfate uptake (BjSultr1;1 and BjSultr1;2). However, a deeper analysis of the expression patterns of three redundant, fully functional, and simultaneously expressed Sultr1;2 forms (BjSultr1;2a, BjSultr1;2b, BjSultr1;2c) revealed that sulfate limitation induced the expression of all the variants, whilst BjSultr1;2b and BjSultr1;2c only seemed to have the capacity to respond to Cd. CONCLUSIONS: A novel method to estimate the apparent kM for sulfate, avoiding the use of radiotracers, revealed that BjSultr1;1 and BjSultr1;2a/b/c are fully functional high-affinity sulfate transporters. The different behavior of the three BjSultr1;2 variants following Cd exposure or sulfate limitation suggests the existence of at least two distinct signal transduction pathways controlling root sulfate uptake in dissimilar nutritional and metabolic states.


Assuntos
Cádmio/toxicidade , Genes de Plantas , Proteínas de Membrana Transportadoras/genética , Mostardeira/genética , Proteínas de Plantas/genética , Sulfatos/farmacologia , Transcrição Gênica/efeitos dos fármacos , Arabidopsis/efeitos dos fármacos , Arabidopsis/genética , Biomassa , Clonagem Molecular , DNA Complementar/genética , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Teste de Complementação Genética , Proteínas de Membrana Transportadoras/metabolismo , Dados de Sequência Molecular , Mostardeira/efeitos dos fármacos , Fenótipo , Proteínas de Plantas/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/metabolismo , Brotos de Planta/efeitos dos fármacos , Brotos de Planta/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Mapeamento por Restrição , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae/crescimento & desenvolvimento , Sulfatos/metabolismo , Enxofre/metabolismo
14.
Bioorg Med Chem ; 21(8): 2379-2386, 2013 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-23462712

RESUMO

The synthesis and pharmacological characterisation of (1-methyl-1H-imidazol-2-yl)-methanamine and its derivatives in Pt(II) complexes are described. Six out of eleven new Pt(II) complexes showed a significant cytotoxic effect on NCI-H460 lung cancer cell line with EC50 values between 1.1 and 0.115 mM, determined by MTT assay. Compound Pt-4a showed a particularly more potent cytotoxic effect than the previously described Pt(II) complex with 2,2'-bipyridine, [Pt(bpy)Cl2], with an EC50 value equal to 172.7 µM versus 726.5 µM respectively, and similar potency of cisplatin (EC50=78.3 µM) in NCI-H460 cell line. The determination of the intracellular and DNA-bound concentrations of (195)Pt, as marker of the presence of the complexes, showed that the cytotoxic compound Pt-4a readily diffused into the cells to a similar extent of cisplatin and directly interacted with the nuclear DNA. Pt-4a induced both p53 and p21(Waf) expression in NCI-H460 cells similar to cisplatin. A direct comparison of the cytotoxic effect between compound Pt-4a and cisplatin on 12 different cancer cell lines demonstrated that compound Pt-4a was in general less potent than cisplatin, but it had a comparable cytotoxic effect on non-small-cell lung cancer NCI-H460 cells, and the colorectal cancer cells HCT-15 and HCT-116. Altogether, these results suggested that the Pt(II) complex with 1-methyl-1H-imidazol-2-yl)-methanamine (compound Pt-4a), displayed a significant cytotoxic activity in cancer cells. Similarly to cisplatin this compound interacts with nuclear DNA and induces both p53 and p21(waf), and thus it represents an interesting starting point for future optimisation of new Pt(II) complexes forming DNA adducts.


Assuntos
Carcinoma/tratamento farmacológico , Cisplatino/farmacologia , Imidazóis/farmacologia , Compostos Organoplatínicos/farmacologia , Carcinoma/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Modelos Moleculares
15.
Int J Food Sci Nutr ; 64(2): 147-54, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23025273

RESUMO

This study investigated the effect of moderate consumption of horse meat on iron status, lipid profile and fatty acid composition of red blood cells in healthy male volunteers. Fifty-two subjects were randomly assigned to two groups of 26 subjects each: a test group consuming two portions of 175 g/week of horse meat, and a control group that abstained from eating horse meat during the 90 days trial. Before and after 90 days, blood samples were collected for analysis. Horse meat consumption significantly (p ≤ 0.05) reduced serum levels of total and low-density lipoprotein cholesterol ( - 6.2% and - 9.1%, respectively) and transferrin ( - 4.6%). Total n - 3, long chain polyunsaturated fatty acids n - 3 and docosahexeanoic acid content in erythrocytes increased (p ≤ 0.05) by about 7.8%, 8% and 11%, respectively. In conclusion, the regular consumption of horse meat may contribute to the dietary intake of n - 3 polyunsaturated fatty acids and may improve lipid profile and iron status in healthy subjects.


Assuntos
LDL-Colesterol/sangue , Dieta , Eritrócitos/metabolismo , Ácidos Graxos Ômega-3/sangue , Cavalos , Ferro/sangue , Carne , Adulto , Animais , Ácidos Docosa-Hexaenoicos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Estado Nutricional , Valores de Referência , Transferrina/metabolismo , Adulto Jovem
16.
Chemosphere ; 90(4): 1449-54, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23026160

RESUMO

The implication of organic acids in Pb translocation was studied in two species varying in shoot lead accumulation, Sesuvium portulacastrum and Brassica juncea. Citric, fumaric, malic and α-cetoglutaric acids were separated and determined by HPLC technique in shoots, roots and xylem saps of the both species grown in nutrient solutions added with 200 and 400 µM of Pb(II). The lead content of the xylem saps was determined by ICP-MS. Results showed that S. portulacastrum is more tolerant to Pb than B. juncea. Lead concentration in xylem sap of the S. portulacastrum was significantly greater than in that of B. juncea. For both species, a positive correlation was established between lead and citrate concentrations in xylem sap. However minor relationship was observed for fumaric, malic and α-cetoglutaric acids. In the shoots lead treatment also induced a significant increase in citric acid concentration. Both observations suggest the implication of citric acid in lead translocation and shoot accumulation in S. portulacastrum and B. juncea. The relatively high accumulation of citric acid in xylem sap and shoot of S. portulacastrum could explain its high potential to translocate and accumulate this metal in shoot suggesting their possible use to remediate Pb polluted soils.


Assuntos
Aizoaceae/fisiologia , Chumbo/metabolismo , Mostardeira/fisiologia , Poluentes do Solo/metabolismo , Transporte Biológico , Ácido Cítrico/metabolismo , Fumaratos/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Xilema/metabolismo
17.
Plant Cell Environ ; 34(6): 994-1008, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21388416

RESUMO

Analysis of rice plants exposed to a broad range of relatively low and environmentally realistic Cd concentrations showed that the root capacity to retain Cd ions rose from 49 to 79%, corresponding to increases in the external Cd²+ concentration in the 0.01-1 µM range. Fractioning of Cd ions retained by roots revealed that different events along the metal sequestration pathway (i.e. chelation by thiols, vacuolar compartmentalization, adsorption) contributed to Cd immobilization in the roots. However, large amounts of Cd ions (around 24% of the total amount) predictable as potentially mobile were still found in all conditions, while the amount of Cd ions loaded in the xylem seemed to have already reached saturation at 0.1 µM Cd²+, suggesting that Cd translocation may also play an indirect role in determining Cd root retention, especially at the highest external concentrations. In silico search and preliminary analyses in yeast suggest OsHMA2 as a good candidate for the control of Cd xylem loading in rice. Taken as a whole, data indicate Cd chelation, compartmentalization, adsorption and translocation processes as components of a complex 'firewall system' which acts in limiting Cd translocation from the root to the shoot and which reaches different equilibrium positions depending on Cd external concentration.


Assuntos
Cádmio/metabolismo , Quelantes/metabolismo , Oryza/metabolismo , Raízes de Plantas/metabolismo , Transporte Biológico , Membrana Celular/metabolismo , Cromatografia em Gel , Regulação da Expressão Gênica de Plantas , Glutationa/metabolismo , Dados de Sequência Molecular , Oryza/genética , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Brotos de Planta/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Compostos de Sulfidrila/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...