Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Nutr Biochem ; 117: 109319, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36963728

RESUMO

Vitamin D (VD) has been used to prevent nonalcoholic fatty liver disease (NAFLD), a condition of lipotoxicity associated with a defective metabolism and function of this vitamin. Different forms of VD are available and can be used for this scope, but their effects on liver cell lipotoxicity remain unexplored. In this study we compared a natural formulation rich in VD2 (Shiitake Mushroom extract or SM-VD2) with a synthetic formulation containing pure VD3 (SV-VD3) and the bioactive metabolite 1,25(OH)2-D3. These were investigated in chemoprevention mode in human HepaRG liver cells supplemented with oleic and palmitic acid to induce lipotoxicity. All the different forms of VD showed similar efficacy in reducing the levels of lipotoxicity and the changes that lipotoxicity induced on the cellular transcriptome. However, the three forms of VD generated different gene fingerprints suggesting diverse, even if functionally convergent, cytoprotective mechanisms. Main differences were (1) the number of differentially expressed genes (SV-VD3 > 1,25[OH]2-D3 > SM-VD2), (2) their identity that demonstrated significant gene homology between SM-VD2 and 1,25(OH)2-D3, and (3) the number and type of biological functions identified by ingenuity pathway analysis as relevant to liver metabolism and cytoprotection annotations. Immunoblot confirmed a different response of VDR and other VDR-related proteins to natural and synthetic VD formulations, including FXR, PXR, PPARγ/PGC-1α, and CYP3A4 and CYP24A1. In conclusion, different responses of the cellular transcriptome drive the cytoprotective effect of natural and synthetic formulations of VD in the free fatty acid-induced lipotoxicity of human hepatocytes.


Assuntos
Receptores de Calcitriol , Vitamina D , Humanos , Vitamina D/farmacologia , Vitamina D/metabolismo , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transcriptoma , Hepatócitos/metabolismo , Vitaminas/farmacologia , Vitamina D3 24-Hidroxilase/genética
2.
Heliyon ; 8(9): e10748, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36193535

RESUMO

Wheat germ oil (WGO) is rich in α-tocopherol (vitamin E, VE), a vitamin that has long been suggested to exert hepatoprotective effects. In this study, this function of WGO-VE and its transcriptomics fingerprint were investigated in comparison with RRR-α-tocopherol and all-rac-α-tocopherol (nVE and sVE, respectively), in human liver cells treated with oleic acid (OA) to develop steatosis and lipotoxicity. Used in chemoprevention mode, all the VE formulations afforded significant reduction of the OA-induced steatosis and its consequent impact on lipotoxicity indicators, including ROS production and efflux (as H2O2), and apoptotic and necrotic cell death. A trend toward a better control of lipotoxicity was observed for WGO-VE and nVE compared to sVE. Gene microarray data demonstrated that these effects of VE formulations were associated with significantly different responses of the cellular transcriptome to compensate for the modifications of OA treatment, including the downregulation of cellular homeostasis genes and the induction of genes associated with defects of liver cell metabolism, fibrosis and inflammation, liver disease and cancer. Ingenuity Pathway Analysis data showed that WGO-VE modulated genes associated with liver carcinogenesis and steatosis, whereas nVE modulated genes involved in liver cell metabolism and viability biofunctions; sVE did not significantly modulate any gene dataset relevant to such biofunctions. In conclusion, WGO-VE prevents lipotoxicity in human liver cells modulating genes that differ from those affected by the natural or synthetic forms of pure VE. These differences can be captured by precision nutrition tools, reflecting the molecular complexity of this VE-rich extract and its potential in preventing specific cues of hepatocellular lipotoxicity.

3.
Front Nutr ; 9: 887378, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36118773

RESUMO

Experimental evidence suggests that neuroinflammation is a key pathological event of many diseases affecting the nervous system. It has been well recognized that these devastating illnesses (e.g., Alzheimer's, Parkinson's, depression, and chronic pain) are multifactorial, involving many pathogenic mechanisms, reason why pharmacological treatments are unsatisfactory. The purpose of this study was to evaluate the efficacy of a vegetal mixture capable of offering a multiple approach required to manage the multifactoriality of neuroinflammation. A mixture composed of Zingiber officinale (150 mg kg-1), Echinacea purpurea (20 mg kg-1), and Centella asiatica (200 mg kg-1) was tested in a mouse model of systemic neuroinflammation induced by lipopolysaccharide (LPS, 1 mg kg-1). Repeated treatment with the vegetal mixture was able to completely counteract thermal and mechanical allodynia as reported by the Cold plate and von Frey tests, respectively, and to reduce the motor impairments as demonstrated by the Rota rod test. Moreover, the mixture was capable of neutralizing the memory loss in the Passive avoidance test and reducing depressive-like behavior in the Porsolt test, while no efficacy was shown in decreasing anhedonia as demonstrated by the Sucrose preference test. Finally, LPS stimulation caused a significant increase in the activation of glial cells, of the central complement proteins and of inflammatory cytokines in selected regions of the central nervous system (CNS), which were rebalanced in animals treated with the vegetal mixture. In conclusion, the vegetal mixture tested thwarted the plethora of symptoms evoked by LPS, thus being a potential candidate for future investigations in the context of neuroinflammation.

4.
Sci Rep ; 10(1): 12915, 2020 07 31.
Artigo em Inglês | MEDLINE | ID: mdl-32737396

RESUMO

Metabolic syndrome has increased at a worrisome level. Lifestyle changes are not sufficient to prevent and improve the adverse effects of obesity, thus novel interventions are necessary. The aim of this study was to investigate the use and metabolic outcomes of a non-pharmacological intervention in a high-fat diet (HFD) fed mouse model, capable of recapitulating key aspects of metabolic syndrome. We show that Policaptil Gel Retard has remarkable, beneficial effects on metabolic dysfunction caused by consumption of HFD. We describe the mechanism by which such effects are obtained, highlighting the fact that the amelioration of metabolic function observed upon Policaptil Gel Retard administration is profound and of systemic nature, despite being originated by sequestering, therefore non-pharmacological events elicited in the gut lumen.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal , Síndrome Metabólica , Animais , Masculino , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/microbiologia , Síndrome Metabólica/terapia , Camundongos
5.
Nutrients ; 12(6)2020 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-32486519

RESUMO

Current pharmacological therapies for the management of chronic articular diseases are far from being satisfactory, so new strategies need to be investigated. We tested the intra-articular pain relieving properties of a system of molecules from a characterized Centella asiatica extract (14G1862) in a rat model of osteoarthritis induced by monoiodoacetate (MIA). 14G1862 (0.2-2 mg mL-1) was intra-articularly (i.a.) injected 7 days after MIA, behavioural and histological evaluations were performed 14, 30 and 60 days after treatments. Moreover, the effect of 14G1862 on nitrate production and iNOS expression in RAW 264.7 macrophages stimulated with LPS was assessed. In vitro, 14G1862 treatment attenuated LPS-induced NO production and iNOS expression in a comparable manner to celecoxib. In vivo, 14G1862 significantly reduced mechanical allodynia and hyperalgesia, spontaneous pain and motor alterations starting on day 14 up to day 60. The efficacy was higher or comparable to that evoked by triamcinolone acetonide (100 µg i.a.) used as reference drug. Histological evaluation highlighted the improvement of several morphological parameters in MIA + 14G1862-treated animals with particularly benefic effects on joint space and fibrin deposition. In conclusion, i.a. treatment with Centella asiatica is a candidate to be a novel effective approach for osteoarthritis therapy.


Assuntos
Analgésicos/uso terapêutico , Centella/química , Injeções Intra-Articulares/métodos , Dor/tratamento farmacológico , Triterpenos/uso terapêutico , Analgésicos/farmacologia , Animais , Artrite Experimental/induzido quimicamente , Artrite Experimental/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Hiperalgesia/tratamento farmacológico , Ácido Iodoacético , Macrófagos/efeitos dos fármacos , Masculino , Camundongos , Nitratos/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Osteoartrite/tratamento farmacológico , Osteoartrite do Joelho/tratamento farmacológico , Manejo da Dor , Extratos Vegetais , Células RAW 264.7 , Ratos , Ratos Sprague-Dawley , Triterpenos/farmacologia
6.
Nutrients ; 12(1)2019 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-31861862

RESUMO

Abdominal pain is a frequent symptom of irritable bowel syndrome (IBS) and inflammatory bowel diseases (IBDs). Although the knowledge of these pathologies is progressing, new therapeutic strategies continue to be investigated. In the present study, the effect of a system of molecules of natural origin (a medical device according to EU Directive 93/42/EC, engineered starting from Boswellia serrata resins, Aloe vera polysaccharides and Matricaria chamomilla and Melissa officinalis polyphenols) was evaluated against the intestinal damage and visceral pain development in DNBS-induced colitis model in rats. The system (250 and 500 mg kg-1) was orally administered once daily, starting three days before the injection of 2,4-dinitrobenzenesulfonic acid (DNBS) and for 14 days thereafter. The viscero-motor response (VMR) to colon-rectal balloon distension (CRD) was used as measure of visceral sensitivity. The product significantly reduced the VMR of DNBS-treated animals. Its effect on pain threshold was better than dexamethasone and mesalazine, and not lower than amitriptyline and otilonium bromide. At microscopic and macroscopic level, the tested system was more effective in protecting the intestinal mucosa than dexamethasone and mesalazine, promoting the healing of tissue lesions. Therefore, we suggest that the described system of molecules of natural origin may represent a therapeutic option to manage painful bowel diseases.


Assuntos
Dor Abdominal/tratamento farmacológico , Preparações de Plantas , Resinas Vegetais , Dor Visceral/tratamento farmacológico , Aloe/química , Animais , Camomila/química , Colite/tratamento farmacológico , Modelos Animais de Doenças , Flavonoides , Masculino , Ratos , Ratos Sprague-Dawley
7.
J Exp Clin Cancer Res ; 38(1): 349, 2019 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-31399037

RESUMO

BACKGROUND: Over the past decade, newly designed cancer therapies have not significantly improved the survival of patients diagnosed with Malignant Pleural Mesothelioma (MPM). Among a limited number of genes that are frequently mutated in MPM several of them encode proteins that belong to the HIPPO tumor suppressor pathway. METHODS: The anticancer effects of the top flower standardized extract of Filipendula vulgaris (Dropwort) were characterized in "in vitro" and "in vivo" models of MPM. At the molecular level, two "omic" approaches were used to investigate Dropwort anticancer mechanism of action: a metabolomic profiling and a phosphoarray analysis. RESULTS: We found that Dropwort significantly reduced cell proliferation, viability, migration and in vivo tumor growth of MPM cell lines. Notably, Dropwort affected viability of tumor-initiating MPM cells and synergized with Cisplatin and Pemetrexed in vitro. Metabolomic profiling revealed that Dropwort treatment affected both glycolysis/tricarboxylic acid cycle as for the decreased consumption of glucose, pyruvate, succinate and acetate, and the lipid metabolism. We also document that Dropwort exerted its anticancer effects, at least partially, promoting YAP and TAZ protein ubiquitination. CONCLUSIONS: Our findings reveal that Dropwort is a promising source of natural compound(s) for targeting the HIPPO pathway with chemo-preventive and anticancer implications for MPM management.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Metabolismo Energético/efeitos dos fármacos , Neoplasias Pulmonares/etiologia , Neoplasias Pulmonares/metabolismo , Mesotelioma/etiologia , Mesotelioma/metabolismo , Extratos Vegetais/farmacologia , Fatores de Transcrição/metabolismo , Aciltransferases , Animais , Linhagem Celular Tumoral , Movimento Celular , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Filipendula/química , Humanos , Neoplasias Pulmonares/patologia , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Extratos Vegetais/química , Ligação Proteica
8.
Front Pharmacol ; 9: 1410, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30581385

RESUMO

The evolution of medical devices has led to the introduction of medical devices that include "substances" and which, due to their presentation and sites of application may resemble medicinal products. The difference between substance-based medical devices and medicinal products lies in the proper definition of the principal mechanism of action. The major problem at the moment is the lack of a proper procedure for the demonstration of a mechanism that is "not pharmacological, immunological or metabolic." We aimed to design an experimental set up to demonstrate the difference between the mechanism of action of two substances used commonly for the treatment of constipation, lubiprostone (example of medicinal product) and glycerine (example of medical device). By implementing cellular models and molecular analyses we demonstrate the difference in their mechanism of action. This set up can be considered an example on the possibility to define a paradigm for the case by case study of the mechanism of action of substances and combination of substances in medical devices.

9.
Cell ; 167(3): 722-738.e23, 2016 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-27768893

RESUMO

A functional crosstalk between epigenetic regulators and metabolic control could provide a mechanism to adapt cellular responses to environmental cues. We report that the well-known nuclear MYST family acetyl transferase MOF and a subset of its non-specific lethal complex partners reside in mitochondria. MOF regulates oxidative phosphorylation by controlling expression of respiratory genes from both nuclear and mtDNA in aerobically respiring cells. MOF binds mtDNA, and this binding is dependent on KANSL3. The mitochondrial pool of MOF, but not a catalytically deficient mutant, rescues respiratory and mtDNA transcriptional defects triggered by the absence of MOF. Mof conditional knockout has catastrophic consequences for tissues with high-energy consumption, triggering hypertrophic cardiomyopathy and cardiac failure in murine hearts; cardiomyocytes show severe mitochondrial degeneration and deregulation of mitochondrial nutrient metabolism and oxidative phosphorylation pathways. Thus, MOF is a dual-transcriptional regulator of nuclear and mitochondrial genomes connecting epigenetics and metabolism.


Assuntos
Metabolismo Energético/genética , Epigênese Genética , Histona Acetiltransferases/metabolismo , Mitocôndrias Musculares/enzimologia , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Cardiomiopatia Hipertrófica/genética , Respiração Celular/genética , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Células HeLa , Insuficiência Cardíaca/genética , Histona Acetiltransferases/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout , Mitocôndrias Cardíacas/enzimologia , Mitocôndrias Cardíacas/genética , Mitocôndrias Musculares/genética , Miócitos Cardíacos/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilação Oxidativa , Fatores de Transcrição/genética
10.
Curr Opin Genet Dev ; 20(2): 171-8, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20167472

RESUMO

X chromosomal regulation is a process that presents systematic problems of chromosome recognition and coordinated gene regulation. In Drosophila males, the ribonucleoprotein Male-Specific Lethal (MSL) complex plays an important role in hyperactivation of the X-linked genes to equalize gene dosage differences between the sexes. It appears that X chromosome recognition by the MSL complex may be mediated through a combination of sequence-specificity and transcriptional activities. The resulting transcriptional up-regulation also seems to involve several mechanisms, encompassing both gene-specific and chromosome-wide approaches. Interestingly the histone H4 lysine 16 specific MOF histone acetyl transferase, a key MSL member that hyper-acetylates the male X chromosome, is also involved in gene regulation beyond dosage compensation. A comparison of Drosophila and mammalian systems reveals intriguing parallels in MOF behavior, and highlights the multidisciplinary nature of this enzyme.


Assuntos
Mecanismo Genético de Compensação de Dose , Genes Ligados ao Cromossomo X/genética , Cromossomo X/genética , Animais , Drosophila/genética , Drosophila/metabolismo , Proteínas de Drosophila/metabolismo , Feminino , Histona Acetiltransferases/metabolismo , Histonas/metabolismo , Masculino , Modelos Genéticos , Cromossomo X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...