Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
1.
Neurotoxicology ; 103: 115-122, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38857677

RESUMO

Fetal alcohol exposure can result in fetal alcohol spectrum disorder (FASD), which encompasses a range of cognitive and behavioral impairments. Although zebrafish have been used as a reliable model to study FASD, little is known about the ontogeny of this disorder and population differences in subsequent generations not directly exposed to alcohol. In this study, we evaluated the behavioral outcomes of zebrafish populations AB, Outbred (OB), and Tubingen (TU), offspring of parents exposed to alcohol during embryonic development. The offspring of adult fish with FASD (exposed to 1 % alcohol at the embryonic stage) was compared to the offspring of unexposed parental fish (0 % alcohol at the embryo phase). The behavioral profile of the offspring was assessed at 6 days post-fertilization (dpf) and 45 dpf. At 6dpf, the AB FASD offspring exhibited hyperactivity and increased time at the edge of the tank, while the TU and OB FASD offspring showed hypoactivity. At 45dpf, TU fish maintained the larval locomotor pattern, characterized by decreased average speed and total distance traveled and increased immobility. However, AB and OB fish did not show alterations in locomotor activity and anxiety-related responses at 45dpf. Our results demonstrate, for the first time, that FASD zebrafish offspring display behavioral differences, which were most evident during the early ontogenetic phase (6dpf) but may vary throughout animal ontogeny. TU fish exhibited the most consistent behavioral pattern across different developmental stages. These findings provide insights into the multigenerational and persistent behavioral consequences of embryonic alcohol exposure in zebrafish. Further research should focus on other features that can be inherited and the development of treatments for the offspring affected by it.

2.
Int J Mol Sci ; 25(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38474103

RESUMO

Maize ranks as the second most widely produced crop globally, yielding approximately 1.2 billion tons, with corn cob being its primary byproduct, constituting 18 kg per 100 kg of corn. Agricultural corn production generates bioactive polysaccharide-rich byproducts, including xylan (Xyl). In this study, we used the redox method to modify corn cob xylan with gallic acid, aiming to enhance its antioxidant and protective capacity against oxidative stress. The conjugation process resulted in a new molecule termed conjugated xylan-gallic acid (Xyl-GA), exhibiting notable improvements in various antioxidant parameters, including total antioxidant capacity (1.4-fold increase), reducing power (1.2-fold increase), hydroxyl radical scavenging (1.6-fold increase), and cupric chelation (27.5-fold increase) when compared with unmodified Xyl. At a concentration of 1 mg/mL, Xyl-GA demonstrated no cytotoxicity, significantly increased fibroblast cell viability (approximately 80%), and effectively mitigated intracellular ROS levels (reduced by 100%) following oxidative damage induced by H2O2. Furthermore, Xyl-GA exhibited non-toxicity toward zebrafish embryos, offered protection against H2O2-induced stress, and reduced the rate of cells undergoing apoptosis resulting from H2O2 exposure. In conclusion, our findings suggest that Xyl-GA possesses potential therapeutic value in addressing oxidative stress-related disturbances. Further investigations are warranted to elucidate the molecular structure of this novel compound and establish correlations with its pharmacological activities.


Assuntos
Antioxidantes , Ácido Gálico , Animais , Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Xilanos/farmacologia , Zea mays/metabolismo , Peróxido de Hidrogênio/farmacologia , Peixe-Zebra/metabolismo , Estresse Oxidativo
3.
Toxics ; 12(2)2024 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-38393255

RESUMO

Diflubenzuron (DFB) and pyriproxyfen (PPF) are larvicides used in crops to control insect plagues. However, these pesticides are known to impact non-target organisms like fish and mammals. Here, we aimed at assessing the embryotoxicity of purified DFB, PPF, and their mixtures in a non-target organism-zebrafish. Zebrafish embryos were exposed to different concentrations for 120 h: 0.025, 0.125, 0.25, 1.25, 2.5, and 10 mg/L of purified PPF and purified DFB, while we used 0.025 mg/L PPF + 10 mg/L DFB (Mix A), 0.125 mg/L PPF + 10 mg/L DFB (Mix B), and 0.25 mg/L PPF + 10 mg/L DFB (Mix C) for the mixtures of PPF + DFB. We observed mortality, teratogenicity, and cardiotoxicity. For the neurotoxicity tests and evaluation of reactive oxygen species (ROS) levels in the brain, embryos were exposed for 120 h to 0.379 and 0.754 mg/L of PPF and 0.025 and 0.125 mg/L of DFB. We established the LC50 for PPF as 3.79 mg/L, while the LC50 for DFB was not determinable. Survival and hatching were affected by PPF concentrations above 0.125 mg/L, DFB concentrations above 1.25 mg/L, and the lower pesticide mixtures. PPF exposure and mixtures induced different types of malformations, while a higher number of malformations were observed for the mixtures, suggesting a potentiating effect. Pesticides diminished avoidance responses and increased the levels of ROS across all concentrations, indicating neurotoxicity. Our findings underscore the detrimental impact of PPF and DFB exposure, spanning from biochemistry to morphology. There is a critical need to reconsider the global use of these pesticides and transition to more ecologically friendly forms of pest control, raising an alarm regarding repercussions on human and animal health and well-being.

4.
Personal Neurosci ; 6: e9, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107778

RESUMO

While the field of personality neuroscience has extensively focused on humans and, in a few cases, primates and rodents, a wide range of research on fish personality has emerged in the last decades. This research is focused mainly on the ecological and evolutionary causes of individual differences and also aimed less extensively at proximal mechanisms (e.g., neurochemistry or genetics). We argue that, if consistent and intentional work is made to solve some of the meta-theoretical issues of personality research both on fish and mammals, fish personality research can lead to important advances in personality neuroscience as a whole. The five dimensions of personality in fish (shyness-boldness, exploration-avoidance, activity, aggressiveness, and sociability) need to be translated into models that explicitly recognize the impacts of personality in psychopathology, synergizing research on fish as model organisms in experimental psychopathology, personality neuroscience, and ecological-ethological approaches to the evolutionary underpinnings of personality to produce a powerful framework to understand individual differences.

5.
Food Chem Toxicol ; 181: 114091, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37804917

RESUMO

Cantaloupe melon is known for its carotenoid-rich orange pulp. However, carotenoids are sensitive to oxygen, light, and heat, potentially reducing their benefits. Nanoencapsulation can preserve these benefits but raises concerns about toxicity. We aimed to assess the safety and bioactive potential of crude extract-rich carotenoids (CE) and nanoparticles based on gelatin loaded with CE (EPG) by investigating parameters such as cardio or neurotoxicity, especially acute toxicity. EPG was obtained by O/W emulsification and characterized by different methods. Zebrafish embryos were exposed to CE and EPG at 12.5 mg/L and 50 mg/L for 96h and were investigated for survival, hatching, malformations, and seven days post fertilization (dpf) larvae's visual motor response. Adult fish underwent behavioral tests after acute exposure of 96h. CE and EPG showed no acute toxicity in zebrafish embryos, and both improved the visual motor response in 7dpf larvae (p = 0.01), suggesting the potential antioxidant and provitamin A effect of carotenoids in cognitive function and response in the evaluated model. Adult fish behavior remained with no signs of anxiety, stress, swimming pattern changes, or sociability that would indicate toxicity. This study highlights the safety and potential benefits of carotenoids in zebrafish. Further research is needed to explore underlying mechanisms and long-term effects.


Assuntos
Cucumis melo , Nanopartículas , Poluentes Químicos da Água , Animais , Carotenoides/farmacologia , Peixe-Zebra , Gelatina/farmacologia , Larva , Poluentes Químicos da Água/toxicidade , Embrião não Mamífero
6.
PeerJ ; 11: e15729, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37576501

RESUMO

Tropical ectotherms are highly sensitive to environmental warming, especially coral reef fishes, which are negatively impacted by an increase of a few degrees in ocean temperature. However, much of our understanding on the thermal sensitivity of reef fish is focused on a few traits (e.g., metabolism, reproduction) and we currently lack knowledge on warming effects on cognition, which may endanger decision-making and survival. Here, we investigated the effects of warming on learning and memory in a damselfish species, Acanthochromis polyacanthus. Fish were held at 28-28.5 °C (control group), 30-30.5 °C (moderate warming group) or 31.5-32 °C (high warming group) for 2 weeks, and then trained to associate a blue tag (cue) to the presence of a conspecific (reward). Following 20 training trials (5 days), fish were tested for associative learning (on the following day) and memory storage (after a 5-days interval). The control group A. polyacanthus showed learning of the task and memory retention after five days, but increasing water temperature impaired learning and memory. A thorough understanding of the effects of heat stress, cognition, and fitness is urgently required because cognition may be a key factor determining animals' performance in the predicted scenario of climate changes. Knowing how different species respond to warming can lead to better predictions of future community dynamics, and because it is species specific, it could pinpoint vulnerable/resilience species.


Assuntos
Recifes de Corais , Perciformes , Animais , Peixes , Mudança Climática , Oceanos e Mares
7.
Dev Growth Differ ; 65(8): 434-445, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37435714

RESUMO

Alcohol and nicotine are psychoactive substances responsible for serious health consequences. Although the biological mechanisms of alcohol and nicotine have been studied extensively, individual differences in the response to these drugs have received little attention. Here we evaluated gene expression and behavior of bold and shy individuals after acute exposure to alcohol and nicotine. For this, zebrafish were classified as bold and shy individuals based on emergence tests, and then fish were exposed to 0.00, 0.10, and 0.50% alcohol or 0.00, 1.00, and 5.00 mg/L nicotine and their anxiety-like and locomotor behavior was observed. After behavioral assessment, brain mRNA expression (ache, bdnf, gaba1, gad1b, th1, and tph1) was evaluated. Locomotion patterns differed between profiles depending on alcohol and nicotine concentration. Anxiety increased in shy fish and decreased in bold fish after exposure to both drugs. Alcohol exposure induced an increase in tph1 mRNA expression in bold fish, while bdnf mRNA expression was increased in shy fish. Nicotine increased ache, bdnf, and tph1 mRNA levels in both profiles, but at higher levels in bold fish. Based on our research, we found that alcohol induces anxiogenic effects in both bold and shy zebrafish. Additionally, shy individuals exposed to a low concentration of nicotine exhibited stronger anxiety-like responses than their bold counterparts. These findings further support the validity of using zebrafish as a dependable tool for studying the effects of drugs and uncovering the underlying mechanisms associated with individual variations.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Peixe-Zebra/genética , Comportamento Animal/fisiologia , Nicotina/efeitos adversos , Fator Neurotrófico Derivado do Encéfalo/genética , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Individualidade , Etanol/efeitos adversos , Expressão Gênica , RNA Mensageiro
9.
Environ Toxicol Pharmacol ; 100: 104164, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37245610

RESUMO

Oxybenzone (BP-3) is an ultraviolet (UV) filter widely used in industries that is directly or indirectly released into the aquatic environment. However, little is known about its effects on brain performance. Here, we investigated whether BP-3 exposure affects the redox imbalance in zebrafish and how they respond to a task that requires memory of an aversive situation. Fish were exposed to BP-3 10 and 50 µg L-1 for 15 days and then tested using an associative learning protocol with electric shock as a stimulus. Brains were extracted for reactive oxygen species (ROS) measurement and qPCR analysis of antioxidant enzyme genes. ROS production increased for exposed animals, and catalase (cat) and superoxide dismutase 2 (sod 2) were upregulated. Furthermore, learning and memory were reduced in zebrafish exposed to BP-3. These results suggested that BP-3 may lead to a redox status imbalance, causing impaired cognition and reinforcing the need to replace the toxic UV filters with filters that minimize environmental effects.


Assuntos
Benzofenonas , Poluentes Químicos da Água , Peixe-Zebra , Animais , Encéfalo/metabolismo , Catalase/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio , Superóxido Dismutase/metabolismo , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise , Peixe-Zebra/metabolismo , Benzofenonas/toxicidade
10.
Behav Processes ; 209: 104886, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150333

RESUMO

Zebrafish is a popular experimental model in several research areas but little is known about the effects of using different strains or housing conditions. Poor control of genetic background and housing conditions could affect experimental results and data reproducibility. Here we investigated the effects of two possible sources of variation on zebrafish behaviour: fish origin and environmental parameters (light intensity, water temperature and noise). Zebrafish behaviour was then examined using the 'novel tank test', one of the most common paradigms used to assess anxiety-like behaviours in zebrafish. Our results show that an increase in light intensity alters fish behaviour, particularly freezing duration and distance from the bottom of the tank, indicating increased anxiety. Swimming activity increased at the lowest temperature (25 °C). However, different levels of background noise did not cause any significant changes in behaviour. Differences were also found between zebrafish strains and populations: while the AB strain from laboratory 1 was minimally influenced by variation in holding conditions, the AB strain from laboratory 2 was highly affected by changes in temperature, light, and background noise. Our study shows that variation in strains and holding conditions can significantly influence the results of behavioural testing and should be carefully considered in the experimental design and properly reported to improve data interpretation and reproducibility.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Qualidade Habitacional , Reprodutibilidade dos Testes , Natação , Ansiedade
11.
Behav Processes ; 209: 104885, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37150335

RESUMO

Behavioral responses vary between individuals and may be repeated in different contexts over time. When a behavioral response set is linked and present regardless of the context, it characterizes a behavioral syndrome. By evaluating how bold and shy (profiles related to risk-taking) individuals perform about exploration and anxiety, we can predict relationships of behavioral syndromes and better understand how different axis of personality is formed. Here we classified the profiles by risk-taking and evaluated their exploration behavior in the open field test. In this context, the two groups showed significant differences in thigmotaxis behavior: bold individuals habituate faster and show decreased thigmotaxis (less anxiety), while shy ones are less prone to leave the security of the side areas of the open tank and present higher anxiety. We emphasized the importance of further investigating the behavior of these profiles in other contexts and the importance of each one for the evolution and fitness of the species, in addition to a better understanding of which behaviors are involved in the behavioral syndromes in zebrafish.


Assuntos
Comportamento Animal , Peixe-Zebra , Animais , Comportamento Animal/fisiologia , Peixe-Zebra/fisiologia , Comportamento Exploratório/fisiologia , Síndrome , Personalidade
12.
Neurotoxicology ; 96: 174-183, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37120037

RESUMO

Fetal alcohol exposure may lead to a condition known as fetal alcohol spectrum disorder (FASD), which comprises a set of consequences, including cognitive and behavioral impairments. Although zebrafish has been applied as a reliable model for studying FASD, there is no approach to the disorder's ontogeny and population differences. Here, we evaluated the behavioral outcomes of AB, Outbred (OB), and Tübingen (TU) zebrafish populations embryonically exposed to alcohol throughout the development to the adult stage. We exposed 24hpf eggs to 0 %, 0.5 %, or 1.0 % alcohol for 2 h. Fish were let grow and locomotor and anxiety-like behaviors were tested in a novel tank at larval - 6dpf, juvenile - 45dpf, and adult- 90dpf stages. At 6dpf, both AB and OB treated with 1.0 % alcohol showed hyperactivity, while 0.5 % and 1.0 % TU fish exhibited hypolocomotion. At 45dpf, AB and TU fish maintained the larval pattern of locomotion. At the adult stage - 90dpf, both AB and TU populations showed increased locomotor activity and anxiogenic responses, while the OB population did not show altered behavior. Our results show for the first time that zebrafish populations exhibit behavioral differences in response to embryonic alcohol exposure and that it varies along animals' ontogeny. AB fish showed the most consistent behavioral pattern through developmental stages, TU fish showed behavioral changes only in adulthood, and OB population showed high interindividual variability. These data reinforce that different populations of zebrafish are better adapted to translational studies, offering reliable results in contrast to domesticated OB populations obtained from farms, which exhibit more variable genomes.


Assuntos
Transtornos do Espectro Alcoólico Fetal , Peixe-Zebra , Animais , Feminino , Humanos , Gravidez , Etanol/toxicidade , Ansiedade/induzido quimicamente , Locomoção , Larva , Comportamento Animal
13.
Artigo em Inglês | MEDLINE | ID: mdl-36921663

RESUMO

Stress is a physiological reaction that allows the organisms to cope with challenging situations daily. Thus, elucidating the behavioral outcomes following different stressors is of great importance in translational research. Here, we aimed to characterize the main factors which explain similarities and differences of two stress protocols on zebrafish exploratory activity. To answer this point, we performed behavioral analyses aiming to simplify the data structure associated with homebase-related measurements in an integrated manner. Adult zebrafish were exposed to conspecific alarm substance for 5 min (acute stress protocol - AS) or submitted to 7 days of unpredictable chronic stress (UCS). Immediately after AS or in the subsequent day following UCS (8th day), fish were individually tested in the open field and the behaviors were recorded for 30 min to posterior identification of homebase locations. For both protocols, behavioral clustering revealed two major clusters, grouping homebase- and locomotor-related parameters, respectively. While AS increased both positive and negative correlations between exploratory and locomotor endpoints, a significant increase in negative correlations was found in UCS-challenged fish. Comparison of the principal component analyses data set revealed a reduced exploratory activity using the homebase in AS group, while decreased locomotion in the periphery and anxiety-like behaviors were evidenced in UCS fish. In conclusion, our findings revealed a different structure of behavior in zebrafish following AS and UCS protocols, supporting the existence of distinct behavioral strategies to cope with acute and chronic stress. Furthermore, we expand the use of homebase-related measurements as a valuable tool to investigate complex behavioral modulations in future translational neuropsychiatry research.


Assuntos
Ansiedade , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Comportamento Animal/fisiologia , Atividade Motora/fisiologia , Comportamento Exploratório/fisiologia
14.
Front Behav Neurosci ; 17: 1028190, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36844649

RESUMO

Foraging is an essential behavior for animal survival and requires both learning and decision-making skills. However, despite its relevance and ubiquity, there is still no effective mathematical framework to adequately estimate foraging performance that also takes interindividual variability into account. In this work, foraging performance is evaluated in the context of multi-armed bandit (MAB) problems by means of a biological model and a machine learning algorithm. Siamese fighting fish (Betta splendens) were used as a biological model and their ability to forage was assessed in a four-arm cross-maze over 21 trials. It was observed that fish performance varies according to their basal cortisol levels, i.e., a reduced average reward is associated with low and high levels of basal cortisol, while the optimal level maximizes foraging performance. In addition, we suggest the adoption of the epsilon-greedy algorithm to deal with the exploration-exploitation tradeoff and simulate foraging decisions. The algorithm provided results closely related to the biological model and allowed the normalized basal cortisol levels to be correlated with a corresponding tuning parameter. The obtained results indicate that machine learning, by helping to shed light on the intrinsic relationships between physiological parameters and animal behavior, can be a powerful tool for studying animal cognition and behavioral sciences.

15.
Chemosphere ; 313: 137519, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36502913

RESUMO

Hydroxyapatite (HA) is a biomaterial widely used in biomedical applications. Many studies have shown that ionic substituents can be incorporated into HA to produce a mineral composition more similar to natural bone tissue with more favorable biological characteristics for application in bone regeneration. However, its potentially toxic effects need to be evaluated before full approval for human use. For this purpose, an embryotoxicity test was performed on zebrafish according to OECD guideline 236. Zebrafish embryos were exposed to 1 or 3 microspheres of alginate containing nanoparticles of HA and carbonate (CHA), strontium (SrHA), and zinc-substituted HA (ZnHA) from 4 to 120 h post-fertilization (hpf). Lethality and developmental endpoints were evaluated. In addition, larval behavior at 168 hpf was also analyzed to observe whether biomaterials adversely affect optomotor and avoidance responses (neurotoxicity), as well as the oxidative stress pattern through qPCR. After 120 h exposure to all microspheres with different patterns of crystallinity, porosity, nanoparticle size, surface area, and degradation behavior, there was no mortality rate greater than 20%, indicating the non-embryotoxic character of these biomaterials. All experimental groups showed positive optomotor and avoidance responses, which means that embryo exposure to the tested biomaterials had no neurotoxic effects. Furthermore, larvae exposed to one SrHA microsphere showed a better optomotor response than the control. Furthermore, the biomaterials did not change the pattern of mRNA levels of genes related to oxidative stress even after 120 hpf. The growing number of new HA-based biomaterials produced should be accompanied by increased studies to understand the biosafety of these compounds, especially in alternative models, such as zebrafish embryos. These results reinforce our hypothesis that ion-substituted HA biomaterials do not impose toxicological effects, cause development and neuromotor impairment, or increase oxidative stress in zebrafish embryos being useful for medical devices and in the process of bone regeneration.


Assuntos
Nanoestruturas , Poluentes Químicos da Água , Animais , Humanos , Peixe-Zebra/metabolismo , Durapatita/toxicidade , Durapatita/metabolismo , Materiais Biocompatíveis/toxicidade , Materiais Biocompatíveis/metabolismo , Estresse Oxidativo , Nanoestruturas/toxicidade , Embrião não Mamífero/metabolismo , Larva , Poluentes Químicos da Água/toxicidade
16.
Mar Pollut Bull ; 184: 114111, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36113177

RESUMO

Anthropogenic noises are widespread and affect marine wildlife. Despite the growing knowledge on noise pollution in the marine environment, its effects on fish cognition are scarce. Here, we investigated the effects of sound exposure on anxiety-like behavior and memory retention on dusky damselfish Stegastes fuscus. The animals were trained in a conditioned place aversion task, and exposed to two daily sessions of music at intensities of 60-70 dBA or 90-100 dBA, while the control group was kept at 42-46 dBA (no music) for five days. After that, fish were tested in the novel tank paradigm and tested for the memory of the aversive task. In the novel tank, animals exposed to sound spent more time still and decreased the distance from the bottom of the tank. Animals also spent more time on the aversive side of the conditioning tank. These results suggest that anthropogenic noise applied through high-intensity music can increase anxiety and decrease memory retention in S. fuscus, suggesting the deleterious potential of noise for reef species.


Assuntos
Perciformes , Animais , Peixes , Ruído , Som , Cognição
17.
Behav Brain Res ; 435: 114034, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-35914633

RESUMO

The open field is a suitable task to analyze the sequential organization of exploratory activity and the homebase formation represents an important feature of environmental recognition. Although the zebrafish can define homebase locations, there are no data reporting how stressful conditions modulate complex behaviors of this aquatic species in the open field so far. Here, we aimed to characterize the spatio-temporal exploratory activity of adult zebrafish in the open field test, as well as to verify the responsiveness of homebase-related parameters to acute stress (AS) and unpredictable chronic stress (UCS) protocols. Animals were exposed to conspecific alarm substance for 5 min or subjected to a 7-days stress protocol using distinct stressors in an unpredictable manner. Immediately after exposure to AS or 24 h after UCS, fish were individually placed in a circular tank and their behaviors were recorded for 30 min to identify the respective homebase for each animal. We observed that UCS, but not AS, increased thigmotaxis compared to the non-stressed fish. Notably, the sequential organization of exploratory activity showed robust differences depending on the stress protocol. After the first 15 min of trial, AS-challenged fish apparently used the homebase to organize briefly explorations to the environment. Conversely, the UCS group was more immobile in the homebase after periodically performing 'swimming bursts' to the periphery with a greater number of stops per trip. Physiological stress responses were confirmed by the increased whole-body cortisol in both AS and UCS groups. In conclusion, our novel findings report a different exploratory profile related to stress responses in adult zebrafish tested in the open field, supporting the sensitivity of homebase-related parameters to manipulations that modulate affective-like states.


Assuntos
Comportamento Exploratório , Peixe-Zebra , Animais , Comportamento Animal/fisiologia , Comportamento Exploratório/fisiologia , Hidrocortisona , Estresse Fisiológico/fisiologia , Peixe-Zebra/fisiologia
18.
Mar Drugs ; 20(8)2022 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-36005493

RESUMO

Antioxidant compounds decrease the amount of intracellular reactive oxygen species (ROS) and, consequently, reduce the deleterious effects of ROS in osteoblasts. Here, we modified a 21 kDa fucoidan (FucA) with gallic acid (GA) using the redox method, to potentiate its antioxidant/protective capacity on pre-osteoblast-like cells (MC3T3) against oxidative stress. The 20 kDa FucA-GA contains 37 ± 3.0 mg GA per gram of FucA. FucA-GA was the most efficient antioxidant agent in terms of total antioxidant capacity (2.5 times), reducing power (five times), copper chelation (three times), and superoxide radical scavenging (2 times). Exposure of MC3T3 cells to H2O2 increased ROS levels and activated caspase-3 along with caspase-9. In addition, the cell viability decreased approximately 80%. FucA-GA also provided the most effective protection against oxidative damage caused by H2O2. Treatment with FucA-GA (1.0 mg/mL) increased cell viability (~80%) and decreased intracellular ROS (100%) and caspase activation (~80%). In addition, Fuc-GA (0.1 mg/mL) abolished H2O2-induced oxidative stress in zebra fish embryos. Overall, FucA-GA protected MC3T3 cells from oxidative stress and could represent a possible adjuvant for the treatment of bone fragility by counteracting oxidative phenomena.


Assuntos
Antioxidantes , Ácido Gálico , Animais , Antioxidantes/farmacologia , Ácido Gálico/farmacologia , Peróxido de Hidrogênio/farmacologia , Oxirredução , Estresse Oxidativo , Polissacarídeos , Espécies Reativas de Oxigênio
19.
Int J Biol Macromol ; 216: 757-767, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35870628

RESUMO

Antioxidants fucoidans from three seaweeds, Undaria pinnatifida (FUP), Macrocystis pyrifera (FMP) and Fucus vesiculosus (FFV) are sold commercially. However, it is unclear which fucoidan is the most potent antioxidant. Therefore, our objective was to compare the antioxidant activities of these fucoidans. For this purpose, six in vitro antioxidant tests were used, total antioxidant capacity, hydroxyl radical scavenging assay, ferrous and cupric chelating assay, reducing power and H2O2 scavenging assay. The data showed that the fucoidans had a low capacity to donate electrons, and a low capacity to chelate metals. The best activity obtained was in the scavenging of hydroxyl radical. When macrophages were exposed to H2O2 and fucoidans, MTT and live/dead assays showed that all fucoidans protected cells from oxidative damage. The survival rate of zebrafish embryos was significantly higher when exposed to H2O2 and fucoidans than H2O2 alone. In summary, the fucoidans evaluated were ranked according to their antioxidant activity as follows: FMP > FFV > FUP, and the results suggest that these fucoidans, mainly FMP, can be used in the formulation of medicines/foods.


Assuntos
Fucus , Macrocystis , Undaria , Animais , Antioxidantes/farmacologia , Peróxido de Hidrogênio , Radical Hidroxila , Polissacarídeos/farmacologia , Peixe-Zebra
20.
Gen Comp Endocrinol ; 323-324: 114044, 2022 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-35472317

RESUMO

Individuals within a population present behavioral responses that vary according to intrinsic and extrinsic factors such as ontogenetic phase, nutritional status, reproductive stage, and previous experiences. These differences can be explained by endogenous changes, such as hormone release, that can modulate reproductive behaviors, stress response, and cognitive processes. In order to investigate the relationship between behavior and hormonal levels in the fighting fish Betta splendens, the present study characterized nest building, aggressive behavior, learning of a task, and levels of cortisol and 11-ketotestosterone (11-KT) in 86 male Fighting fish. At the beginning of the experiment (days 1-4), fish were characterized as nest builders, intermediate builders, or non-builders. They were then sequentially tested for aggression (days 7-8), learning performance (days 11-21), and circulating hormone levels (day 23). Nest builders showed the lowest hormonal levels at the end of the experiment and low aggressiveness; Intermediate builders presented low cortisol, but high KT levels and best learned the task; Non-builders were the most aggressive animals with higher cortisol levels (at day 23). Our data suggest that in B. splendens, aggressive behavior and learning performance are related to the relative investment in reproduction and variation in circulating levels of corticosteroids and androgens.


Assuntos
Peixes , Hidrocortisona , Agressão , Androgênios/fisiologia , Animais , Peixes/fisiologia , Aprendizagem , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...