Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Craniovertebr Junction Spine ; 12(3): 223-227, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34728987

RESUMO

INTRODUCTION: Several techniques for pedicle screw placement have been described including freehand techniques, fluoroscopy assisted, computed tomography (CT) guidance, and robotics. Image-guided surgery offers the potential to combine the benefits of CT guidance without the added radiation. This study investigated the ability of a neural network to place lumbar pedicle screws with the correct length, diameter, and angulation autonomously within radiographs without the need for human involvement. MATERIALS AND METHODS: The neural network was trained using a machine learning process. The method combines the previously reported autonomous spine segmentation solution with a landmark localization solution. The pedicle screw placement was evaluated using the Zdichavsky, Ravi, and Gertzbein grading systems. RESULTS: In total, the program placed 208 pedicle screws between the L1 and S1 spinal levels. Of the 208 placed pedicle screws, 208 (100%) had a Zdichavsky Score 1A, 206 (99.0%) of all screws were Ravi Grade 1, and Gertzbein Grade A indicating no breech. The final two screws (1.0%) had a Ravi score of 2 (<2 mm breech) and a Gertzbein grade of B (<2 mm breech). CONCLUSION: The results of this experiment can be combined with an image-guided platform to provide an efficient and highly effective method of placing pedicle screws during spinal stabilization surgery.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...