Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neural Comput ; 28(8): 1599-662, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27348735

RESUMO

Consider a self-motivated artificial agent who is exploring a complex environment. Part of the complexity is due to the raw high-dimensional sensory input streams, which the agent needs to make sense of. Such inputs can be compactly encoded through a variety of means; one of these is slow feature analysis (SFA). Slow features encode spatiotemporal regularities, which are information-rich explanatory factors (latent variables) underlying the high-dimensional input streams. In our previous work, we have shown how slow features can be learned incrementally, while the agent explores its world, and modularly, such that different sets of features are learned for different parts of the environment (since a single set of regularities does not explain everything). In what order should the agent explore the different parts of the environment? Following Schmidhuber's theory of artificial curiosity, the agent should always concentrate on the area where it can learn the easiest-to-learn set of features that it has not already learned. We formalize this learning problem and theoretically show that, using our model, called curiosity-driven modular incremental slow feature analysis, the agent on average will learn slow feature representations in order of increasing learning difficulty, under certain mild conditions. We provide experimental results to support the theoretical analysis.

2.
Sci Data ; 1: 140047, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25977798

RESUMO

WAY-EEG-GAL is a dataset designed to allow critical tests of techniques to decode sensation, intention, and action from scalp EEG recordings in humans who perform a grasp-and-lift task. Twelve participants performed lifting series in which the object's weight (165, 330, or 660 g), surface friction (sandpaper, suede, or silk surface), or both, were changed unpredictably between trials, thus enforcing changes in fingertip force coordination. In each of a total of 3,936 trials, the participant was cued to reach for the object, grasp it with the thumb and index finger, lift it and hold it for a couple of seconds, put it back on the support surface, release it, and, lastly, to return the hand to a designated rest position. We recorded EEG (32 channels), EMG (five arm and hand muscles), the 3D position of both the hand and object, and force/torque at both contact plates. For each trial we provide 16 event times (e.g., 'object lift-off') and 18 measures that characterize the behaviour (e.g., 'peak grip force').


Assuntos
Eletroencefalografia , Força da Mão/fisiologia , Levantamento de Peso/fisiologia , Eletroencefalografia/métodos , Humanos
3.
Front Psychol ; 4: 833, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24324448

RESUMO

A reinforcement learning agent that autonomously explores its environment can utilize a curiosity drive to enable continual learning of skills, in the absence of any external rewards. We formulate curiosity-driven exploration, and eventual skill acquisition, as a selective sampling problem. Each environment setting provides the agent with a stream of instances. An instance is a sensory observation that, when queried, causes an outcome that the agent is trying to predict. After an instance is observed, a query condition, derived herein, tells whether its outcome is statistically known or unknown to the agent, based on the confidence interval of an online linear classifier. Upon encountering the first unknown instance, the agent "queries" the environment to observe the outcome, which is expected to improve its confidence in the corresponding predictor. If the environment is in a setting where all instances are known, the agent generates a plan of actions to reach a new setting, where an unknown instance is likely to be encountered. The desired setting is a self-generated goal, and the plan of action, essentially a program to solve a problem, is a skill. The success of the plan depends on the quality of the agent's predictors, which are improved as mentioned above. For validation, this method is applied to both a simulated and real Katana robot arm in its "blocks-world" environment. Results show that the proposed method generates sample-efficient curious exploration behavior, which exhibits developmental stages, continual learning, and skill acquisition, in an intrinsically-motivated playful agent.

4.
Front Neurorobot ; 7: 9, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23755011

RESUMO

Curiosity Driven Modular Incremental Slow Feature Analysis (CD-MISFA;) is a recently introduced model of intrinsically-motivated invariance learning. Artificial curiosity enables the orderly formation of multiple stable sensory representations to simplify the agent's complex sensory input. We discuss computational properties of the CD-MISFA model itself as well as neurophysiological analogs fulfilling similar functional roles. CD-MISFA combines 1. unsupervised representation learning through the slowness principle, 2. generation of an intrinsic reward signal through learning progress of the developing features, and 3. balancing of exploration and exploitation to maximize learning progress and quickly learn multiple feature sets for perceptual simplification. Experimental results on synthetic observations and on the iCub robot show that the intrinsic value system is essential for representation learning. Representations are typically explored and learned in order from least to most costly, as predicted by the theory of curiosity.

5.
Neural Comput ; 24(11): 2994-3024, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22845826

RESUMO

We introduce here an incremental version of slow feature analysis (IncSFA), combining candid covariance-free incremental principal components analysis (CCIPCA) and covariance-free incremental minor components analysis (CIMCA). IncSFA's feature updating complexity is linear with respect to the input dimensionality, while batch SFA's (BSFA) updating complexity is cubic. IncSFA does not need to store, or even compute, any covariance matrices. The drawback to IncSFA is data efficiency: it does not use each data point as effectively as BSFA. But IncSFA allows SFA to be tractably applied, with just a few parameters, directly on high-dimensional input streams (e.g., visual input of an autonomous agent), while BSFA has to resort to hierarchical receptive-field-based architectures when the input dimension is too high. Further, IncSFA's updates have simple Hebbian and anti-Hebbian forms, extending the biological plausibility of SFA. Experimental results show IncSFA learns the same set of features as BSFA and can handle a few cases where BSFA fails.


Assuntos
Algoritmos , Simulação por Computador , Aprendizagem , Modelos Neurológicos , Inteligência Artificial , Análise de Componente Principal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...