Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Curr Cardiol Rev ; 18(5): 24-33, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379136

RESUMO

Adaptation of cardiac muscle to regular exercise results in morphological and structural changes known as physiological cardiac hypertrophy, to which the Hippo signaling pathway might have contributed. Two major terminal effectors in the Hippo signaling pathway are Yes-associated protein (YAP) and its homolog transcriptional coactivator with PDZ-binding motif (TAZ). The latest studies have reported the role of YAP and TAZ in different life stages, such as in fetal, neonatal, and adult hearts. Their regulation might involve several mechanisms and effectors. One of the possible coregulators is exercise. Exercise plays a role in cardiomyocyte hypertrophic changes during different stages of life, including in aged hearts. YAP/TAZ signaling pathway has a role in physiological cardiac hypertrophy induced by exercise and is associated with cardiac remodelling. Thus, it can be believed that exercise has roles in activating the signaling pathway of YAP and TAZ in aged cardiomyocytes. However, the studies regarding the roles of YAP and TAZ during cardiomyocyte aging are limited. The primary purpose of this review is to explore the response of cardiovascular aging to exercise via signaling pathway of YAP and TAZ.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Fosfoproteínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Idoso , Envelhecimento , Cardiomegalia , Exercício Físico , Humanos , Recém-Nascido , Miócitos Cardíacos/metabolismo , Fosfoproteínas/metabolismo , Proteínas de Sinalização YAP
2.
Heliyon ; 6(5): e03874, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32395654

RESUMO

INTRODUCTION: Aerobic training has a beneficial effect on enhancing liver functions. Autophagy might potentially play a role in preventing excessive lipid accumulation, regulating oxidative stress, and inflammation in the liver. OBJECTIVE: To investigate the potential linking role of autophagy-related gene expressions and protein levels with histopathology changes in Wistar rat livers after treadmill training under different intensities. METHODS: 20 rats were divided into 4 groups (control, low intensity, moderate intensity, and high intensity). 8 weeks of treadmill training was conducted with a frequency of 5 days per week, for a duration of 30 min per day. Liver histopathology was studied using hematoxylin-eosin, and oil red O staining. RNA and protein from the liver tissues were extracted to examine the autophagy-related gene (LC3, p62) and protein levels (Beclin, ATG5, LC3, p62). The gene expressions of CPT1a, CD36, FATP 2,3,5, GLUT2, and FGF21 were also studied. RESULTS: Different intensities of training might potentially modulate autophagy-related gene expressions in rat livers. LC3 and p62 mRNA expressions in moderate and high intensities decreased compared to control. Beclin, ATG5, and LC3 protein level increased compared to control, while p62 protein level decreased compared to control. Whereas for the other genes, we found an increase in CPT1a, but we did not observed any changes in the expression of the other genes. Interestingly, autophagy-related gene expressions might be correlated with the changes of sinusoidal dilatation, cloudy swelling, inflammation, and lipid droplets of the liver tissues. CONCLUSION: Moderate and high intensities of training induce autophagy activity, combined with a shift in metabolic zonation in liver that might be potentially correlated with lipophagy. Our results showed the potential interplay role between autophagy and liver histopathology appearances as a part of the adaptation process to training.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...