Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 17(26): 17053-62, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26063248

RESUMO

Triazatriangulenium (TATA) platform molecules allow the preparation of functionalized surfaces with well-defined lateral spacings of freestanding functional groups. Using scanning tunneling microscopy, synchrotron-based X-ray photoelectron spectroscopy, near edge X-ray absorption fine structure spectroscopy and complementary density functional theory calculations the chemical composition and orientational order of adlayers of functionalized azobenzene containing TATA platform molecules were characterized. According to these studies the molecules are chemically intact on the surface after self-assembly from solution and exhibit a well-defined adsorption geometry where the azobenzene units are oriented almost perpendicular to the surface.

2.
Phys Chem Chem Phys ; 15(46): 20272-80, 2013 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-24166534

RESUMO

Mono- and multilayers of the molecular photoswitch azobenzene were adsorbed on two layered transition-metal dichalcogenides, semiconducting HfS2 and metallic TiTe2, at temperatures of 80-120 K and investigated in situ using valence-band and core-level photoelectron spectroscopy as well as near-edge X-ray absorption fine structure spectroscopy. The spectroscopic results indicate similar growth modes on the two substrates. In the monolayer systems, the azobenzene molecules tend to lie flat on the surface with average tilt angles of <15°, whereas the multilayer systems show a larger average tilt angle of 35-45°, depending on substrate surface conditions. The chemical environment of azobenzene, as investigated by XPS, does not change significantly from mono- to multilayers suggesting weak adsorbate-substrate coupling for the molecular layer that forms the interface with the substrate. Irradiation with ultraviolet light with a wavelength of 365 nm leads to a partial rearrangement of the adsorbed azobenzene molecules with a trans-to-cis conversion of up to 35%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...