Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 9(19): 6334-6345, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28387406

RESUMO

Spinel-type Co3O4 finds applications in a wide range of fields, including clean energy conversion, where nanostructured Co3O4 may provide a cost-efficient alternative to platinum- and iridium-based catalysts for electrocatalytic water-splitting. We here describe a novel strategy in which basic cobalt carbonate - a precursor to Co3O4 - is precipitated as sheet-like structures and microspheres covered with fine surface protrusions, via ammonium carbonate decomposition at room temperature. Importantly, these mild reaction conditions enable us to employ bio-inspired templating approaches to further control the mineral structure. Rod-like tobacco mosaic viruses (TMV) were used as biotemplates for mineral deposition, where we profit from the ability of Co(ii) ions to mediate the ordered assembly of the virus nanorods to create complex tubular superstructures of TMV/ basic cobalt carbonate. Calcination of these tubules is then achieved with retention of the gross morphology, and generates a hierarchically-structured solid comprising interconnected Co3O4 nanoparticles. Evaluation of these Co3O4 materials as electrocatalysts for the oxygen evolution reaction (OER) demonstrates that the activity of Co3O4 prepared by calcination of ammonia diffusion-grown precursors in both, the absence or presence of TMV exceeds that of a commercial nanopowder.

2.
Phys Chem Chem Phys ; 14(1): 273-9, 2012 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-22073402

RESUMO

Ultrafast transient absorption spectroscopy is performed on a novel donor-acceptor-donor triad made of two identical bisthiophene derivatives as electron donors and a central perylenediimide moiety as electron acceptor. The triad is extended at both ends by covalently bound siloxane chains that confer self-organisation into thin smectic films at ambient temperature. When diluted in chloroform, selective excitation of the donor moiety leads to resonance energy transfer within 130 fs to the acceptor moiety, followed by the formation of a charge transfer (CT) state in ~3 ps. The CT state recombines entirely on a 55 ps time scale. In the liquid crystal films, excitonic intermolecular coupling leads to significant changes in the dynamics. Most remarkably, ultrafast intra- and intermolecular CT state formation occurs in about 60 fs, i.e. on a time scale comparable to electronic coherence times. While the intra-molecular CT states recombine on the same time scale as in solution or even faster, inter-molecular CT states live for about 1 ns. Last, triplet states of the perylenediimide moiety dominate the differential absorption after ~1 ns. We anticipate that the fast recombination of intra-molecular CT states and the triplet state formation may severely limit the photo-current in these materials.

3.
Phys Rev Lett ; 89(13): 135502, 2002 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-12225034

RESUMO

We investigate the microscopic mechanisms responsible for microdomain alignment in block copolymer solutions exposed to an electric field. Using time-resolved synchrotron small-angle x-ray scattering, we reveal two distinct processes, i.e., grain boundary migration and rotation of entire grains, as the two dominant microscopic mechanisms. The former dominates in weakly segregating systems, while the latter is predominant in strongly segregated systems. The kinetics of the processes are followed as a function of polymer concentration and temperature and are correlated to the solution viscosity.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...