Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 12(43): 48773-48780, 2020 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-33052645

RESUMO

Memristive devices based on electrochemical resistive switching effects have been proposed as promising candidates for in-memory computing and for the realization of artificial neural networks. Despite great efforts toward understanding the nanoionic processes underlying resistive switching phenomena, comprehension of the effect of competing redox processes on device functionalities from the materials perspective still represents a challenge. In this work, we experimentally and theoretically investigate the concurring reactions of silver and moisture and their impact on the electronic properties of a single-crystalline ZnO nanowire (NW). A decrease in electronic conductivity due to surface adsorption of moisture is observed, whereas, at the same time, water molecules reduce the energy barrier for Ag+ ion migration on the NW surface, facilitating the conductive filament formation. By controlling the relative humidity, the ratio of intrinsic electronic conductivity and surface ionic conductivity can be tuned to modulate the device performance. The results achieved on a single-crystalline memristive model system shed new light on the dual nature of the mechanism of how moisture affects resistive switching behavior in memristive devices.

2.
Nat Commun ; 9(1): 5151, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30514894

RESUMO

The ability for artificially reproducing human brain type signals' processing is one of the main challenges in modern information technology, being one of the milestones for developing global communicating networks and artificial intelligence. Electronic devices termed memristors have been proposed as effective artificial synapses able to emulate the plasticity of biological counterparts. Here we report for the first time a single crystalline nanowire based model system capable of combining all memristive functions - non-volatile bipolar memory, multilevel switching, selector and synaptic operations imitating Ca2+ dynamics of biological synapses. Besides underlying common electrochemical fundamentals of biological and artificial redox-based synapses, a detailed analysis of the memristive mechanism revealed the importance of surfaces and interfaces in crystalline materials. Our work demonstrates the realization of self-assembled, self-limited devices feasible for implementation via bottom up approach, as an attractive solution for the ultimate system miniaturization needed for the hardware realization of brain-inspired systems.


Assuntos
Biomimética/instrumentação , Eletroquímica/instrumentação , Eletroquímica/métodos , Eletrônica/instrumentação , Memória/fisiologia , Nanofios/química , Redes Neurais de Computação , Encéfalo , Eletrodos , Desenho de Equipamento , Humanos , Modelos Neurológicos , Nanotecnologia , Plasticidade Neuronal , Compostos de Prata/química , Sinapses/química , Sinapses/fisiologia , Volatilização , Óxido de Zinco/química
3.
Adv Mater ; : e1800957, 2018 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-29882270

RESUMO

Resistive switching based on transition metal oxide memristive devices is suspected to be caused by the electric-field-driven motion and internal redistribution of oxygen vacancies. Deriving the detailed mechanistic picture of the switching process is complicated, however, by the frequently observed influence of the surrounding atmosphere. Specifically, the presence or absence of water vapor in the atmosphere has a strong impact on the switching properties, but the redox reactions between water and the active layer have yet to be clarified. To investigate the role of oxygen and water species during resistive switching in greater detail, isotope labeling experiments in a N2 /H218 O tracer gas atmosphere combined with time-of-flight secondary-ion mass spectrometry are used. It is explicitly demonstrated that during the RESET operation in resistive switching SrTiO3 -based memristive devices, oxygen is incorporated directly from water molecules or oxygen molecules into the active layer. In humid atmospheres, the reaction pathway via water molecules predominates. These findings clearly resolve the role of humidity as both oxidizing agent and source of protonic defects during the RESET operation.

4.
ACS Appl Mater Interfaces ; 9(22): 19287-19295, 2017 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-28508634

RESUMO

Metal oxides are commonly used as electrolytes for redox-based resistive switching memories. In most cases, non-noble metals are directly deposited as ohmic electrodes. We demonstrate that irrespective of bulk thermodynamics predictions an intermediate oxide film a few nanometers in thickness is always formed at the metal/insulator interface, and this layer significantly contributes to the development of reliable switching characteristics. We have tested metal electrodes and metal oxides mostly used for memristive devices, that is, Ta, Hf, and Ti and Ta2O5, HfO2, and SiO2. Intermediate oxide layers are always formed at the interfaces, whereas only the rate of the electrode oxidation depends on the oxygen affinity of the metal and the chemical stability of the oxide matrix. Device failure is associated with complete transition of short-range order to a more disordered main matrix structure.

5.
ACS Appl Mater Interfaces ; 9(12): 10820-10824, 2017 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-28266834

RESUMO

A great improvement in valence change memory performance has been recently achieved by adding another metallic layer to the simple metal-insulator-metal (MIM) structure. This metal layer is often referred to as oxygen exchange layer (OEL) and is introduced between one of the electrodes and the oxide. The OEL is believed to induce a distributed reservoir of defects at the metal-insulator interface thus providing an unlimited availability of building blocks for the conductive filament (CF). However, its role remains elusive and controversial owing to the difficulties to probe the interface between the OEL and the CF. Here, using Scalpel SPM we probe multiple functions of the OEL which have not yet been directly measured, for two popular VCMs material systems: Hf/HfO2 and Ta/Ta2O5. We locate and characterize in three-dimensions the volume containing the oxygen exchange layer and the CF with nanometer lateral resolution. We demonstrate that the OEL induces a thermodynamic barrier for the CF and estimate the minimum thickness of the OEL/oxide interface to guarantee the proper switching operations is ca. 3 nm. Our experimental observations are combined to first-principles thermodynamics and defect kinetics to elucidate the role of the OEL for device optimization.

6.
Nat Nanotechnol ; 11(1): 67-74, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26414197

RESUMO

A detailed understanding of the resistive switching mechanisms that operate in redox-based resistive random-access memories (ReRAM) is key to controlling these memristive devices and formulating appropriate design rules. Based on distinct fundamental switching mechanisms, two types of ReRAM have emerged: electrochemical metallization memories, in which the mobile species is thought to be metal cations, and valence change memories, in which the mobile species is thought to be oxygen anions (or positively charged oxygen vacancies). Here we show, using scanning tunnelling microscopy and supported by potentiodynamic current-voltage measurements, that in three typical valence change memory materials (TaO(x), HfO(x) and TiO(x)) the host metal cations are mobile in films of 2 nm thickness. The cations can form metallic filaments and participate in the resistive switching process, illustrating that there is a bridge between the electrochemical metallization mechanism and the valence change mechanism. Reset/Set operations are, we suggest, driven by oxidation (passivation) and reduction reactions. For the Ta/Ta2O5 system, a rutile-type TaO2 film is believed to mediate switching, and we show that devices can be switched from a valence change mode to an electrochemical metallization mode by introducing an intermediate layer of amorphous carbon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...