Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Oncotarget ; 7(31): 49539-49551, 2016 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-27385100

RESUMO

Apoptosis is deregulated in most, if not all, cancers, including hematological malignancies. Smac mimetics that antagonize Inhibitor of Apoptosis (IAP) proteins have so far largely been investigated in acute myeloid leukemia (AML) cell lines; however, little is yet known on the therapeutic potential of Smac mimetics in primary AML samples. In this study, we therefore investigated the antileukemic activity of the Smac mimetic BV6 in diagnostic samples of 67 adult AML patients and correlated the response to clinical, cytogenetic and molecular markers and gene expression profiles. Treatment with cytarabine (ara-C) was used as a standard chemotherapeutic agent. Interestingly, about half (51%) of primary AML samples are sensitive to BV6 and 21% intermediate responsive, while 28% are resistant. Notably, 69% of ara-C-resistant samples show a good to fair response to BV6. Furthermore, combination treatment with ara-C and BV6 exerts additive effects in most samples. Whole-genome gene expression profiling identifies cell death, TNFR1 and NF-κB signaling among the top pathways that are activated by BV6 in BV6-sensitive, but not in BV6-resistant cases. Furthermore, sensitivity of primary AML blasts to BV6 correlates with significantly elevated expression levels of TNF and lower levels of XIAP in diagnostic samples, as well as with NPM1 mutation. In a large set of primary AML samples, these data provide novel insights into factors regulating Smac mimetic response in AML and have important implications for the development of Smac mimetic-based therapies and related diagnostics in AML.


Assuntos
Morte Celular/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Peptídeos e Proteínas de Sinalização Intracelular/farmacologia , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Mitocondriais/farmacologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Apoptose , Proteínas Reguladoras de Apoptose , Linhagem Celular Tumoral , Sobrevivência Celular , Citarabina/farmacologia , Feminino , Perfilação da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , NF-kappa B/metabolismo , Nucleofosmina , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Transdução de Sinais , Resultado do Tratamento , Adulto Jovem
2.
J Mol Med (Berl) ; 84(1): 46-56, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16258766

RESUMO

To elucidate the ionic mechanism of endothelin-1 (ET-1)-induced focal ventricular tachyarrhythmias, the regulation of I(K1) and its main molecular correlates, Kir2.1, Kir2.2 and Kir2.3 channels, by ET-1 was investigated. Native I(K1) in human atrial cardiomyocytes was studied with whole-cell patch clamp. Human endothelin receptors were coexpressed with human Kir2.1, Kir2.2 and Kir2.3 channels in Xenopus oocytes. Currents were measured with a two-microelectrode voltage clamp. In human cardiomyocytes, ET-1 induced a marked inhibition of I(K1) that could be suppressed by the protein kinase C (PKC) inhibitor staurosporine. To investigate the molecular mechanisms underlying this regulation, we studied the coupling of ET(A) receptors to homomeric and heteromeric Kir2.1, Kir2.2 and Kir2.3 channels in the Xenopus oocyte expression system. ET(A) receptors coupled functionally to Kir2.2 and Kir2.3 channels but not to Kir2.1 channels. In Kir2.2 channels lacking functional PKC phosphorylation sites, the inhibitory effect was abolished. The inhibition of Kir2.3 currents could be suppressed by the PKC inhibitors staurosporine and chelerythrine. The coupling of ET(A) receptors to heteromeric Kir2.1/Kir2.2 and Kir2.2/Kir2.3 channels resulted in a strong inhibition of currents comparable with the effect observed in Kir2.2 homomers. Surprisingly, in heteromeric Kir2.1/Kir2.3 channels, no effect was observed. ET-1 inhibits human cardiac I(K1) current via a PKC-mediated phosphorylation of Kir2.2 channel subunits and additional regulatory effects on Kir2.3 channels. This mechanism may contribute to the intrinsic arrhythmogenic potential of ET-1.


Assuntos
Endotelina-1/fisiologia , Miócitos Cardíacos/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Taquicardia/metabolismo , Idoso , Alcaloides/metabolismo , Animais , Benzofenantridinas/metabolismo , Endotelina-1/genética , Endotelina-1/farmacologia , Inibidores Enzimáticos/metabolismo , Átrios do Coração/citologia , Humanos , Pessoa de Meia-Idade , Miócitos Cardíacos/citologia , Miócitos Cardíacos/metabolismo , Oócitos/fisiologia , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo , Receptor de Endotelina A/metabolismo , Estaurosporina/metabolismo , Xenopus laevis
3.
J Mol Med (Berl) ; 82(12): 826-37, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15365637

RESUMO

Patients with cardiac disease typically develop life-threatening ventricular arrhythmias during physical or emotional stress, suggesting a link between adrenergic stimulation and regulation of the cardiac action potential. Human ether-a-go-go related gene (hERG) potassium channels conduct the rapid component of the repolarizing delayed rectifier potassium current, I(Kr). Previous studies have revealed that hERG channel activation is modulated by activation of the beta-adrenergic system. In contrast, the influence of the alpha-adrenergic signal transduction cascade on hERG currents is less well understood. The present study examined the regulation of hERG currents by alpha(1A)-adrenoceptors. hERG channels and human alpha(1A)-adrenoceptors were heterologously coexpressed in Xenopus laevis oocytes, and currents were measured using the two-microelectrode voltage clamp technique. Stimulation of alpha(1A)-receptors by applying 20 microM phenylephrine caused hERG current reduction due to a 9.6-mV shift of the activation curve towards more positive potentials. Simultaneous application of the alpha(1)-adrenoceptor antagonist prazosin (20 microM) prevented the activation shift. Inhibition of PKC (3 microM Ro-32-0432) or PKA (2.5 microM KT 5720) abolished the alpha-adrenergic activation shift, suggesting that PKC and PKA are required within the regulatory mechanism. The effect was still present when the PKA- and PKC-dependent phosphorylation sites in hERG were deleted by mutagenesis. In summary, cardiac repolarizing hERG/I(Kr) potassium currents are modulated by alpha(1A)-adrenoceptors via PKC and PKA independently of direct channel phosphorylation. This novel regulatory pathway of alpha1-adrenergic hERG current regulation provides a link between stress and ventricular arrhythmias, in particular in patients with heart disease.


Assuntos
Miocárdio/metabolismo , Canais de Potássio de Abertura Dependente da Tensão da Membrana/metabolismo , Potássio/metabolismo , Receptores Adrenérgicos alfa 1/metabolismo , Animais , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Canal de Potássio ERG1 , Canais de Potássio Éter-A-Go-Go , Humanos , Fosforilação , Canais de Potássio de Abertura Dependente da Tensão da Membrana/genética , Proteína Quinase C/metabolismo , Xenopus laevis
4.
Naunyn Schmiedebergs Arch Pharmacol ; 368(5): 404-14, 2003 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-14557918

RESUMO

Budipine is a non-dopaminergic antiparkinsonian drug causing acquired forms of Long QT syndrome (aLQTS). As a consequence, the manufacturer has restricted the use of budipine in patients who exhibit additional risk factors for the development of "Torsades-de-Pointes" tachycardias (TdP). The molecular basis of this serious side effect has not been elucidated yet. Human ether-a-go-go related gene (HERG) channel block being the main cause of drug induced QT prolongation, we investigated the effect of budipine on the rapid component of the delayed-rectifier potassium current (I(K(r))) in guinea pig cardiomyocytes and on HERG potassium channels heterologously expressed in Xenopus oocytes. In guinea pig cardiomyocytes, budipine (10 microM) inhibited I(K(r)) by 86% but was without any effect on calcium currents. In Xenopus oocytes, HERG potassium channels were blocked by budipine with an IC(50) of 10.2 microM. Onset of block was fast and block was only slowly and incompletely reversible upon washout. Budipine blocked HERG channels in the open and inactivated state, but not in the closed states. The half-maximal activation voltage was slightly shifted towards more negative potentials. Steady-state inactivation of HERG was also influenced by budipine. Budipine block was neither voltage- nor frequency-dependent. In HERG channel mutants Y652A and F656A, drug affinity was reduced dramatically. Therefore, these two aromatic residues in the channel pore are likely to form a main part of the binding site for budipine. In summary, this is the first study that provides a molecular basis for the budipine-associated aLQTS observed in clinical practice. Furthermore, these findings underline the importance of the aromatic residues Y652 and F656 in the binding of lipophilic drugs to HERG channels.


Assuntos
Antiparkinsonianos/efeitos adversos , Proteínas de Transporte de Cátions , Síndrome do QT Longo/metabolismo , Piperidinas/efeitos adversos , Canais de Potássio de Abertura Dependente da Tensão da Membrana , Canais de Potássio/metabolismo , Animais , Sítios de Ligação , Canais de Cálcio/efeitos dos fármacos , Canais de Cálcio/fisiologia , Canais de Potássio Éter-A-Go-Go , Cobaias , Técnicas In Vitro , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Oócitos/efeitos dos fármacos , Técnicas de Patch-Clamp , Canais de Potássio/fisiologia , Fatores de Tempo , Xenopus laevis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...