Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Methods Mol Biol ; 860: 255-86, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22351182

RESUMO

GC-MS based metabolome studies aim for the complete identification and relative or absolute quantification of metabolites in complex extracts from a large diversity of biological materials. The resulting high-throughput chromatography data files are typically processed following two complementary workflows, namely, fingerprinting and profiling. For fingerprinting studies all observed mass features, here called mass spectral tags (MSTs), are quantified in a nontargeted and (within the limits of the GC-MS technology) comprehensive approach. Fingerprinting allows for the discovery of MSTs, which, in the sense of a biomarker, indicate significant changes of metabolite pool sizes. The significance and relevance of such MSTs are typically tested in comparison to standardized reference samples. Only after this confirmation step are the relevant MSTs identified and the underlying metabolic biomarkers elucidated. Both the metabolite fingerprinting and profiling approaches are essential to modern biotechnological investigations. Studies which are aimed at establishing the substantial equivalence at metabolic level or aim to breed for optimum quality of human food or animal feed especially benefit from the potential to discover novel unforeseen metabolic factors in fingerprinting approaches and from the option to demonstrate unchanged pool sizes of known metabolites in the metabolic profiling mode. As GC-MS technology represents one essential element which contributes to investigations of substantial equivalence, we have developed a dedicated software tool, the TagFinder chromatography data preprocessing suite, which has all essential functions to support both fundamental workflows of modern metabolomic studies. In this chapter, we describe the TagFinder software and its application to the assessment of metabolic phenotypes in fingerprinting and profiling analyses.


Assuntos
Biomarcadores/análise , Metaboloma , Software , Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolômica
2.
Metabolomics ; 5(4): 479-496, 2009 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-20376177

RESUMO

The application of gas chromatography-mass spectrometry (GC-MS) to the 'global' analysis of metabolites in complex samples (i.e. metabolomics) has now become routine. The generation of these data-rich profiles demands new strategies in data mining and standardisation of experimental and reporting aspects across laboratories. As part of the META-PHOR project's (METAbolomics for Plants Health and OutReach: http://www.meta-phor.eu/) priorities towards robust technology development, a GC-MS ring experiment based upon three complex matrices (melon, broccoli and rice) was launched. All sample preparation, data processing, multivariate analyses and comparisons of major metabolite features followed standardised protocols, identical models of GC (Agilent 6890N) and TOF/MS (Leco Pegasus III) were also employed. In addition comprehensive GCxGC-TOF/MS was compared with 1 dimensional GC-TOF/MS. Comparisons of the paired data from the various laboratories were made with a single data processing and analysis method providing an unbiased assessment of analytical method variants and inter-laboratory reproducibility. A range of processing and statistical methods were also assessed with a single exemplary dataset revealing near equal performance between them. Further investigations of long-term reproducibility are required, though the future generation of global and valid metabolomics databases offers much promise.

3.
Bioinformatics ; 24(5): 732-7, 2008 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-18204057

RESUMO

MOTIVATION: Typical GC-MS-based metabolite profiling experiments may comprise hundreds of chromatogram files, which each contain up to 1000 mass spectral tags (MSTs). MSTs are the characteristic patterns of approximately 25-250 fragment ions and respective isotopomers, which are generated after gas chromatography (GC) by electron impact ionization (EI) of the separated chemical molecules. These fragment ions are subsequently detected by time-of-flight (TOF) mass spectrometry (MS). MSTs of profiling experiments are typically reported as a list of ions, which are characterized by mass, chromatographic retention index (RI) or retention time (RT), and arbitrary abundance. The first two parameters allow the identification, the later the quantification of the represented chemical compounds. Many software tools have been reported for the pre-processing, the so-called curve resolution and deconvolution, of GC-(EI-TOF)-MS files. Pre-processing tools generate numerical data matrices, which contain all aligned MSTs and samples of an experiment. This process, however, is error prone mainly due to (i) the imprecise RI or RT alignment of MSTs and (ii) the high complexity of biological samples. This complexity causes co-elution of compounds and as a consequence non-selective, in other words impure MSTs. The selection and validation of optimal fragment ions for the specific and selective quantification of simultaneously eluting compounds is, therefore, mandatory. Currently validation is performed in most laboratories under human supervision. So far no software tool supports the non-targeted and user-independent quality assessment of the data matrices prior to statistical analysis. TagFinder may fill this gap. STRATEGY: TagFinder facilitates the analysis of all fragment ions, which are observed in GC-(EI-TOF)-MS profiling experiments. The non-targeted approach allows the discovery of novel and unexpected compounds. In addition, mass isotopomer resolution is maintained by TagFinder processing. This feature is essential for metabolic flux analyses and highly useful, but not required for metabolite profiling. Whenever possible, TagFinder gives precedence to chemical means of standardization, for example, the use of internal reference compounds for retention time calibration or quantitative standardization. In addition, external standardization is supported for both compound identification and calibration. The workflow of TagFinder comprises, (i) the import of fragment ion data, namely mass, time and arbitrary abundance (intensity), from a chromatography file interchange format or from peak lists provided by other chromatogram pre-processing software, (ii) the annotation of sample information and grouping of samples into classes, (iii) the RI calculation, (iv) the binning of observed fragment ions of equal mass from different chromatograms into RI windows, (v) the combination of these bins, so-called mass tags, into time groups of co-eluting fragment ions, (vi) the test of time groups for intensity correlated mass tags, (vii) the data matrix generation and (viii) the extraction of selective mass tags supported by compound identification. Thus, TagFinder supports both non-targeted fingerprinting analyses and metabolite targeted profiling. AVAILABILITY: Exemplary TagFinder workspaces and test data sets are made available upon request to the contact authors. TagFinder is made freely available for academic use from http://www-en.mpimp-golm.mpg.de/03-research/researchGroups/01-dept1/Root_Metabolism/smp/TagFinder/index.html.


Assuntos
Cromatografia Gasosa-Espectrometria de Massas/métodos , Metabolismo , Linguagens de Programação
4.
Trends Biotechnol ; 23(1): 28-33, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15629855

RESUMO

Metabolome analysis technologies are still in early development because, unlike genome, transcriptome and proteome analyses, metabolome analysis has to deal with a highly diverse range of biomolecules. Combinations of different analytical platforms are therefore required for comprehensive metabolomic studies. Each of these platforms covers only part of the metabolome. To establish multiparallel technologies, thorough standardization of each measured metabolite is required. Standardization is best achieved by addition of a specific stable isotope-labeled compound, a mass isotopomer, for each metabolite. This suggestion, at first glance, seems unrealistic because of cost and time constraints. A possible solution to this problem is discussed in this article. Saturation in vivo labeling with stable isotopes enables the biosynthesis of differentially mass-labeled metabolite mixtures, which can be exploited for highly standardized metabolite profiling by mass isotopomer ratios.


Assuntos
Bioquímica/métodos , Marcação por Isótopo/métodos , Metabolismo , Radioisótopos de Carbono , Cromatografia Gasosa-Espectrometria de Massas/métodos
5.
Bioinformatics ; 20(18): 3647-51, 2004 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-15247097

RESUMO

SUMMARY: The open access comprehensive systems-biology database (CSB.DB) presents the results of bio-statistical analyses on gene expression data in association with additional biochemical and physiological knowledge. The main aim of this database platform is to provide tools that support insight into life's complexity pyramid with a special focus on the integration of data from transcript and metabolite profiling experiments. The central part of CSB.DB, which we describe in this applications note, is a set of co-response databases that currently focus on the three key model organisms, Escherichia coli, Saccharomyces cerevisiae and Arabidopsis thaliana. CSB.DB gives easy access to the results of large-scale co-response analyses, which are currently based exclusively on the publicly available compendia of transcript profiles. By scanning for the best co-responses among changing transcript levels, CSB.DB allows to infer hypotheses on the functional interaction of genes. These hypotheses are novel and not accessible through analysis of sequence homology. The database enables the search for pairs of genes and larger units of genes, which are under common transcriptional control. In addition, statistical tools are offered to the user, which allow validation and comparison of those co-responses that were discovered by gene queries performed on the currently available set of pre-selectable datasets. AVAILABILITY: All co-response databases can be accessed through the CSB.DB Web server (http://csbdb.mpimp-golm.mpg.de/).


Assuntos
Sistemas de Gerenciamento de Base de Dados , Bases de Dados de Proteínas , Armazenamento e Recuperação da Informação/métodos , Análise de Sequência de Proteína/métodos , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Interface Usuário-Computador , Perfilação da Expressão Gênica/métodos , Biologia de Sistemas/métodos , Integração de Sistemas
6.
Bioinformatics ; 20(12): 1928-39, 2004 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-15044239

RESUMO

MOTIVATION: A major issue in computational biology is the reconstruction of functional relationships among genes, for example the definition of regulatory or biochemical pathways. One step towards this aim is the elucidation of transcriptional units, which are characterized by co-responding changes in mRNA expression levels. These units of genes will allow the generation of hypotheses about respective functional interrelationships. Thus, the focus of analysis currently moves from well-established functional assignment through comparison of protein and DNA sequences towards analysis of transcriptional co-response. Tools that allow deducing common control of gene expression have the potential to complement and extend routine BLAST comparisons, because gene function may be inferred from common transcriptional control. RESULTS: We present a co-clustering strategy of genome sequence information and gene expression data, which was applied to identify transcriptional units within diverse compendia of expression profiles. The phenomenon of prokaryotic operons was selected as an ideal test case to generate well-founded hypotheses about transcriptional units. The existence of overlapping and ambiguous operon definitions allowed the investigation of constitutive and conditional expression of transcriptional units in independent gene expression experiments of Escherichia coli. Our approach allowed identification of operons with high accuracy. Furthermore, both constitutive mRNA co-response as well as conditional differences became apparent. Thus, we were able to generate insight into the possible biological relevance of gene co-response. We conclude that the suggested strategy will be amenable in general to the identification of transcriptional units beyond the chosen example of E.coli operons. AVAILABILITY: The analyses of E.coli transcript data presented here are available upon request or at http://csbdb.mpimp-golm.mpg.de/


Assuntos
Algoritmos , Mapeamento Cromossômico/métodos , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Bacteriana da Expressão Gênica/fisiologia , Fatores de Transcrição/metabolismo , Análise por Conglomerados , Simulação por Computador , Modelos Biológicos , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Óperon/genética , Transdução de Sinais/fisiologia
7.
EMBO Rep ; 4(10): 989-93, 2003 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-12973302

RESUMO

The past few years in the medical and biological sciences have been characterized by the advent of systems biology. However, despite the well-known connectivity between the molecules described by transcriptomic, proteomic and metabolomic approaches, few studies have tried to correlate parameters across the various levels of systemic description. When comparing the discriminatory power of metabolic and RNA profiling to distinguish between different potato tuber systems, using the techniques described here suggests that metabolic profiling has a higher resolution than expression profiling. When applying pairwise transcript-metabolite correlation analyses, 571 of the 26,616 possible pairs showed significant correlation, most of which was novel and included several strong correlations to nutritionally important metabolites. We believe this approach to be of high potential value in the identification of candidate genes for modifying the metabolite content of biological systems.


Assuntos
Biologia Computacional , Perfilação da Expressão Gênica , Metabolismo , Biologia Computacional/métodos , Genoma Humano , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Solanum tuberosum/genética , Solanum tuberosum/metabolismo , Estatística como Assunto , Teoria de Sistemas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...