Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Acta Biomater ; 157: 275-287, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36549635

RESUMO

Osteocytes act as bone mechanosensors, regulators of osteoblast/osteoclast activity and mineral homeostasis, however, knowledge about their functional/morphological changes throughout life is limited. We used quantitative backscattered electron imaging (qBEI) to investigate osteocyte lacunae sections (OLS) as a 2D-surrogate characterizing the osteocytes. OLS characteristics, the density of mineralized osteocyte lacunae (i.e., micropetrotic osteocytes, md.OLS-Density in nb/mm2) and the average degree of mineralization (CaMean in weight% calcium) of cortex and spongiosa were analyzed in transiliac biopsy samples from healthy individuals under 30 (n=59) and over 30 years (n=50) (i.e., before and after the age of peak bone mass, respectively). We found several differences in OLS-characteristics: 1). Inter-individually between the age groups: OLS-Density and OLS-Porosity were reduced by about 20% in older individuals in spongiosa and in cortex versus younger probands (both, p < 0.001). 2). Intra-individually between bone compartments: OLS-Density was higher in the cortex, +18.4%, p < 0.001 for younger and +7.6%, p < 0.05 for older individuals. Strikingly, the most frequent OLS nearest-neighbor distance was about 30 µm in both age groups and at both bone sites revealing a preferential organization of osteocytes in clusters. OLS-Density was negatively correlated with CaMean in both spongiosa and cortex (both, p < 0.001). Few mineralized OLS were found in young individuals along with an increase of md.OLS-Density with age. In summary, this transiliac bone sample analysis of 200000 OLS from 109 healthy individuals throughout lifespan reveals several age-related differences in OLS characteristics. Moreover, our study provides reference data from healthy individuals for different ages to be used for diagnosis of bone abnormalities in diseases. STATEMENT OF SIGNIFICANCE: Osteocytes are bone cells embedded in lacunae within the mineralized bone matrix and have a key role in the bone metabolism and the mineral homeostasis. Not easily accessible, we used quantitative backscattered electron imaging to determine precisely number and shape descriptors of the osteocyte lacunae in 2D. We analyzed transiliac biopsy samples from 109 individuals with age distributed from 2 to 95 years. Compact cortical bone showed constantly higher lacunar density than cancellous bone but the lacunar density in both bone tissue decreased with age before the peak bone mass age at 30 years and stabilized or even increased after this age. This extensive study provides osteocyte lacunae reference data from healthy individuals usable for bone pathology diagnosis.


Assuntos
Longevidade , Osteócitos , Humanos , Idoso , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Osteócitos/patologia , Osso e Ossos , Matriz Óssea , Densidade Óssea , Biópsia
2.
J Bone Miner Res ; 29(10): 2144-51, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24753092

RESUMO

High bone mass in animals and humans with sclerostin deficiency is associated with increased bone strength, which is not the case for all disorders with high bone mineral density, some of which are even associated with fragility fractures owing to unfavorable bone composition. In the current study we investigated whether alterations in bone composition may contribute to the bone strength characteristics associated with lack of sclerostin. We examined cortical bone of Sost-knockout (KO) mice (n = 9, 16 weeks old) and sclerosteosis patients (young [4 to 14 years], n = 4 and adults [24 and 43 years], n = 2) by quantitative backscattered electron imaging and Raman microspectroscopy and compared it to bone from wild-type mice and healthy subjects, respectively. In Sost-KO mice endocortical bone exhibited altered bone composition, whereas subperiosteal bone was unchanged. When comparing endocortical bone tissue of identical tissue age as defined by sequential dual fluorochrome labeling the average bone matrix mineralization was reduced -1.9% (p < 0.0001, younger tissue age) and -1.5% (p < 0.05, older tissue age), and the relative proteoglycan content was significantly increased. Similarly, bone matrix mineralization density distribution was also shifted toward lower matrix mineralization in surgical samples of compact bone of sclerosteosis patients. This was associated with an increase in mineralization heterogeneity in the young population. In addition, and consistently, the relative proteoglycan content was increased. In conclusion, we observed decreased matrix mineralization and increased relative proteoglycan content in bone subcompartments of Sost-KO mice-a finding that translated into sclerosteosis patients. We hypothesize that the altered bone composition contributes to the increased bone strength of patients with sclerostin deficiency.


Assuntos
Densidade Óssea , Proteínas Morfogenéticas Ósseas/deficiência , Glicoproteínas/deficiência , Proteínas Adaptadoras de Transdução de Sinal , Adolescente , Adulto , Análise de Variância , Animais , Proteínas Morfogenéticas Ósseas/metabolismo , Calcificação Fisiológica , Criança , Pré-Escolar , Elétrons , Marcadores Genéticos , Glicoproteínas/metabolismo , Humanos , Hiperostose/patologia , Hiperostose/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular , Camundongos Knockout , Microscopia de Fluorescência , Análise Espectral Raman , Sindactilia/patologia , Sindactilia/fisiopatologia , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...