Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Microsc ; 246(3): 298-308, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22582799

RESUMO

This paper presents a new automated method for analyzing compression wood fibers in fluorescence microscopy. Abnormal wood known as compression wood is present in almost every softwood tree harvested. Compression wood fibers show a different cell wall morphology and chemistry compared to normal wood fibers, and their mechanical and physical characteristics are considered detrimental for both construction wood and pulp and paper purposes. Currently there is the need for improved methodologies for characterization of lignin distribution in wood cell walls, such as from compression wood fibers, that will allow for a better understanding of fiber mechanical properties. Traditionally, analysis of fluorescence microscopy images of fiber cross-sections has been done manually, which is time consuming and subjective. Here, we present an automatic method, using digital image analysis, that detects and delineates softwood fibers in fluorescence microscopy images, dividing them into cell lumen, normal and highly lignified areas. It also quantifies the different areas, as well as measures cell wall thickness. The method is evaluated by comparing the automatic with a manual delineation. While the boundaries between the various fiber wall regions are detected using the automatic method with precision similar to inter and intra expert variability, the position of the boundary between lumen and the cell wall has a systematic shift that can be corrected. Our method allows for transverse structural characterization of compression wood fibers, which may allow for improved understanding of the micro-mechanical modeling of wood and pulp fibers.


Assuntos
Automação/métodos , Lignina/análise , Microscopia de Fluorescência/métodos , Células Vegetais/química , Madeira/química , Madeira/citologia , Processamento de Imagem Assistida por Computador/métodos
2.
IEEE Trans Pattern Anal Mach Intell ; 27(11): 1826-31, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16285380

RESUMO

When performing measurements in digitized images, the pixel pitch does not necessarily limit the attainable accuracy. Proper sampling of a band-limited continuous-domain image preserves all information present in the image prior to digitization. It is therefore (theoretically) possible to obtain measurements from the digitized image that are identical to measurements made in the continuous domain. Such measurements are sampling invariant, since they are independent of the chosen sampling grid. It is impossible to attain strict sampling invariance for filters in mathematical morphology due to their nonlinearity, but it is possible to approximate sampling invariance with arbitrary accuracy at the expense of additional computational cost. In this paper, we study morphological filters with line segments as structuring elements. We present a comparison of three known and three new methods to implement these filters. The method that yields a good compromise between accuracy and computational cost employs a (subpixel) skew to the image, followed by filtering along the grid axes using a discrete line segment, followed by an inverse skew. The staircase approximations to line segments under random orientations can be modeled by skewing a horizontal or vertical line segment. Rather than skewing the binary line segment we skew the image data, which substantially reduces quantization error. We proceed to determine the optimal number of orientations to use when measuring the length of line segments with unknown orientation.


Assuntos
Algoritmos , Inteligência Artificial , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Reconhecimento Automatizado de Padrão/métodos , Processamento de Sinais Assistido por Computador , Armazenamento e Recuperação da Informação/métodos , Tamanho da Amostra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...