Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Dalton Trans ; 52(43): 16005-16017, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37850309

RESUMO

Four series of new luminescent cyclometalated complexes [Pt(C^N)(IPy)Y] (HC^N = 2-phenylpyridine (Hppy), 2-(1-benzofuran-3-yl)pyridine (Hbfpy), methyl-2-phenylquinoline-4-carboxylate (Hmpqc), 2-(1-benzothiophen-3-yl)pyridine (Hbtpy), IPy = 4-iodopyridine, and Y = Cl, Br, I) have been investigated as X/Y 'building blocks' for the construction of a supramolecular network utilizing the I atom in IPy as a halogen bond (XB) donor (the X atom). The σ-hole of the X atom was found to provide non-covalent X⋯Y, X⋯Pt and X⋯π (π system of the metalated chelate ring) interactions for the complexes in the crystal state. NBO analysis confirms donation of the platinum electron density to iodine upon the X⋯Pt interaction. The nature of the X counterpart in XB depends on the nature of the Y atom and the cyclometalating ligand of the Pt(II) complex. DFT calculations show that the HOMO of [Pt(C^N)(IPy)Y] in the S0 state is delocalized over Pt, Y and a C-coordinating fragment of C^N, while the LUMO in most complexes is formed by the Py orbitals of IPy. However, the α-HOMO in the lowest triplet state of [Pt(C^N)(IPy)Y] contains no contribution of the IPy wavefunctions. All Pt(II) complexes exhibited triplet luminescence in solution and in the solid state (Φ up to 0.129), which is determined by the nature of the C^N ligand. The emission profile is independent of the nature of the ligand Y, while the quantum yield decreases from Cl to I. Accordingly, on the basis of DFT calculation, this emission is interpreted as a C^N intraligand charge transfer predominantly. The XB formation did not show an effect on the luminescence of the complexes in the solid phase, however grinding of crystals results in an increase of brightness.

2.
Molecules ; 27(7)2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35408648

RESUMO

In this work we show, using the example of a series of [Cu(Xantphos)(N^N)]+ complexes (N^N being substituted 5-phenyl-bipyridine) with different peripheral N^N ligands, that substituents distant from the main action zone can have a significant effect on the physicochemical properties of the system. By using the C≡C bond on the periphery of the coordination environment, three hybrid molecular systems with -Si(CH3)3, -Au(PR3), and -C2HN3(CH2)C10H7 fragments were produced. The Cu(I) complexes thus obtained demonstrate complicated emission behaviour, which was investigated by spectroscopic, electrochemical, and computational methods in order to understand the mechanism of energy transfer. It was found that the -Si(CH3)3 fragment connected to the peripheral C≡C bond changes luminescence to long-lived intra-ligand phosphorescence, in contrast to MLCT phosphorescence or TADF. The obtained results can be used for the design of new materials based on Cu(I) complexes with controlled optoelectronic properties on the molecular level, as well as for the production of hybrid systems.


Assuntos
Complexos de Coordenação , Complexos de Coordenação/química , Cobre/química , Ligantes , Luminescência , Análise Espectral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...