Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plant Sci ; 319: 111239, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35487652

RESUMO

Elicitins are proteinaceous elicitors that induce the hypersensitive response and plant resistance against diverse phytopathogens. Elicitin recognition by membrane receptors or high-affinity sites activates a variety of fast responses including the production of reactive oxygen species (ROS) and nitric oxide (NO), leading to induction of plant defense genes. Beta-cryptogein (CRY) is a basic ß-elicitin secreted by the oomycete Phytophthora cryptogea that shows high necrotic activity in some plant species, whereas infestin 1 (INF1) secreted by the oomycete P. infestans belongs to acidic α-elicitins with a significantly weaker capacity to induce necrosis. We compared several mutated forms of ß-CRY and INF1 with a modulated capacity to trigger ROS and NO production, bind plant sterols and induce cell death responses in cell cultures of Nicotiana tabacum L. cv. Xanthi. We evidenced a key role of the lysine residue in position 13 in basic elicitins for their biological activity and enhancement of necrotic effects of acidic INF1 by the replacement of the valine residue in position 84 by larger phenylalanine. Studied elicitins activated in differing intensity signaling pathways of ROS, NO and phytohormones jasmonic acid, ethylene and salicylic acid, known to be involved in triggering of hypersensitive response and establishment of systemic resistance.


Assuntos
Nitrogênio , Phytophthora , Proteínas de Algas/genética , Sequência de Aminoácidos , Proteínas Fúngicas/metabolismo , Oxigênio , Plantas/metabolismo , Espécies Reativas de Oxigênio , Relação Estrutura-Atividade
2.
Hortic Res ; 8(1): 34, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33518717

RESUMO

Regulation of protein function by reversible S-nitrosation, a post-translational modification based on the attachment of nitroso group to cysteine thiols, has emerged among key mechanisms of NO signalling in plant development and stress responses. S-nitrosoglutathione is regarded as the most abundant low-molecular-weight S-nitrosothiol in plants, where its intracellular concentrations are modulated by S-nitrosoglutathione reductase. We analysed modulations of S-nitrosothiols and protein S-nitrosation mediated by S-nitrosoglutathione reductase in cultivated Solanum lycopersicum (susceptible) and wild Solanum habrochaites (resistant genotype) up to 96 h post inoculation (hpi) by two hemibiotrophic oomycetes, Phytophthora infestans and Phytophthora parasitica. S-nitrosoglutathione reductase activity and protein level were decreased by P. infestans and P. parasitica infection in both genotypes, whereas protein S-nitrosothiols were increased by P. infestans infection, particularly at 72 hpi related to pathogen biotrophy-necrotrophy transition. Increased levels of S-nitrosothiols localised in both proximal and distal parts to the infection site, which suggests together with their localisation to vascular bundles a signalling role in systemic responses. S-nitrosation targets in plants infected with P. infestans identified by a proteomic analysis include namely antioxidant and defence proteins, together with important proteins of metabolic, regulatory and structural functions. Ascorbate peroxidase S-nitrosation was observed in both genotypes in parallel to increased enzyme activity and protein level during P. infestans pathogenesis, namely in the susceptible genotype. These results show important regulatory functions of protein S-nitrosation in concerting molecular mechanisms of plant resistance to hemibiotrophic pathogens.

3.
J Adv Res ; 27: 199-209, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33318878

RESUMO

BACKGROUND: Sulfur and diverse sulfur-containing compounds constitute important components of plant defences against a wide array of microbial pathogens. Among them, hydrogen sulfide (H2S) occupies a prominent position as a gaseous signalling molecule that plays multiple roles in regulation of plant growth, development and plant responses to stress conditions. Although the production of H2S in plant cells has been discovered several decades ago, the underlying pathways of H2S biosynthesis, metabolism and signalling were only recently uncovered. AIM OF THE REVIEW: Here we review the current knowledge on the biosynthesis of H2S in plant cells, with special attention to L-cysteine desulfhydrase (DES) as the key enzyme controlling H2S levels biosynthesis in the cytosol of plant cells during plant growth, development and diverse abiotic and biotic stress conditions. KEY SCIENTIFIC CONCEPTS OF REVIEW: Recent advances have revealed molecular mechanisms of DES properties, functions and regulation involved in modulations of H2S production during plant responses to abiotic and biotic stress stimuli. Studies on des mutants of the model plant Arabidopsis thaliana uncovered molecular mechanisms of H2S action as a signalling and defence molecule in plant-pathogen interactions. Signalling pathways of H2S include S-persulfidation of protein cysteines, a redox-based post-translational modification leading to activation of downstream components of H2S signalling. Accumulated evidence shows DES and H2S implementation into salicylic acid signalling and activation of pathogenesis-related proteins and autophagy within plant immunity. Obtained knowledge on molecular mechanisms of H2S action in plant defence responses opens new prospects in the search for crop varieties with increased resistance to bacterial and fungal pathogens.

4.
J Exp Bot ; 72(3): 848-863, 2021 02 11.
Artigo em Inglês | MEDLINE | ID: mdl-33367760

RESUMO

Nitric oxide (NO) and reactive nitrogen species have emerged as crucial signalling and regulatory molecules across all organisms. In plants, fungi, and fungi-like oomycetes, NO is involved in the regulation of multiple processes during their growth, development, reproduction, responses to the external environment, and biotic interactions. It has become evident that NO is produced and used as a signalling and defence cue by both partners in multiple forms of plant interactions with their microbial counterparts, ranging from symbiotic to pathogenic modes. This review summarizes current knowledge on the role of NO in plant-pathogen interactions, focused on biotrophic, necrotrophic, and hemibiotrophic fungi and oomycetes. Actual advances and gaps in the identification of NO sources and fate in plant and pathogen cells are discussed. We review the decisive role of time- and site-specific NO production in germination, oriented growth, and active penetration by filamentous pathogens of the host tissues, as well in pathogen recognition, and defence activation in plants. Distinct functions of NO in diverse interactions of host plants with fungal and oomycete pathogens of different lifestyles are highlighted, where NO in interplay with reactive oxygen species governs successful plant colonization, cell death, and establishment of resistance.


Assuntos
Óxido Nítrico , Oomicetos , Fungos , Interações Hospedeiro-Patógeno , Doenças das Plantas
5.
Plants (Basel) ; 9(11)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114295

RESUMO

S-nitrosation has been recognized as an important mechanism of ubiquitous posttranslational modification of proteins on the basis of the attachment of the nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-based modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. This review summarizes the current knowledge on the emerging role of the thioredoxin-thioredoxin reductase (TRXR-TRX) system in protein denitrosation. Important advances have been recently achieved on plant thioredoxins (TRXs) and their properties, regulation, and functions in the control of protein S-nitrosation in plant root development, translation of photosynthetic light harvesting proteins, and immune responses. Future studies of plants with down- and upregulated TRXs together with the application of genomics and proteomics approaches will contribute to obtain new insights into plant S-nitrosothiol metabolism and its regulation.

6.
Plant Physiol Biochem ; 155: 297-310, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32795911

RESUMO

Nitric oxide plays an important role in the pathogenesis of Pseudoidium neolycopersici, the causative agent of tomato powdery mildew. S-nitrosoglutathione reductase, the key enzyme of S-nitrosothiol homeostasis, was investigated during plant development and following infection in three genotypes of Solanum spp. differing in their resistance to P. neolycopersici. Levels and localization of reactive nitrogen species (RNS) including NO, S-nitrosoglutathione (GSNO) and peroxynitrite were studied together with protein nitration and the activity of nitrate reductase (NR). GSNOR expression profiles and enzyme activities were modulated during plant development and important differences among Solanum spp. genotypes were observed, accompanied by modulation of NO, GSNO, peroxynitrite and nitrated proteins levels. GSNOR was down-regulated in infected plants, with exception of resistant S. habrochaites early after inoculation. Modulations of GSNOR activities in response to pathogen infection were found also on the systemic level in leaves above and below the inoculation site. Infection strongly increased NR activity and gene expression in resistant S. habrochaites in contrast to susceptible S. lycopersicum. Obtained data confirm the key role of GSNOR and modulations of RNS during plant development under normal conditions and point to their involvement in molecular mechanisms of tomato responses to biotrophic pathogens on local and systemic levels.


Assuntos
Aldeído Oxirredutases/metabolismo , Doenças das Plantas , Espécies Reativas de Nitrogênio/metabolismo , Solanum lycopersicum/enzimologia , Solanum lycopersicum/microbiologia , Ascomicetos/patogenicidade , Genótipo , Doenças das Plantas/microbiologia
7.
Front Plant Sci ; 11: 598, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32508862

RESUMO

Nitration of diverse biomolecules, including proteins, lipids and nucleic acid, by reactive nitrogen species represents one of the key mechanisms mediating nitric oxide (NO) biological activity across all types of organisms. 8-nitroguanosine 3'5'-cyclic monophosphate (8-nitro-cGMP) has been described as a unique electrophilic intermediate involved in intracellular redox signaling. In animal cells, 8-nitro-cGMP is formed from guanosine-5'-triphosphate by a combined action of reactive nitrogen (RNS) and oxygen species (ROS) and guanylate cyclase. As demonstrated originally in animal models, 8-nitro-cGMP shows certain biological activities closely resembling its analog cGMP; however, its regulatory functions are mediated mainly by its electrophilic properties and chemical interactions with protein thiols resulting in a novel protein post-translational modification termed S-guanylation. In Arabidopsis thaliana, 8-nitro-cGMP was reported to mediate NO-dependent signaling pathways controlling abscisic acid (ABA)-induced stomatal closure, however, its derivative 8-mercapto-cGMP (8-SH-cGMP) was later shown as the active component of hydrogen sulfide (H2S)-mediated guard cell signaling. Here we present a survey of current knowledge on biosynthesis, metabolism and biological activities of nitrated nucleotides with special attention to described and proposed functions of 8-nitro-cGMP and its metabolites in plant physiology and stress responses.

8.
Methods Mol Biol ; 2057: 45-59, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31595469

RESUMO

S-nitrosation as a redox-based posttranslational modification of protein cysteine has emerged as an integral part of signaling pathways of nitric oxide across all types of organisms. Protein S-nitrosation status is controlled by two key mechanisms: by direct denitrosation performed by the thioredoxin/thioredoxin reductase system, and in an indirect way mediated by S-nitrosoglutathione reductase (GSNOR). GSNOR, which has been identified as a key component of S-nitrosothiols catabolism, catalyzes an irreversible decomposition of abundant intracellular S-nitrosothiol, S-nitrosoglutathione (GSNO) to oxidized glutathione using reduced NADH cofactor. In plants, GSNOR has been shown to play important roles in plant growth and development and plant responses to abiotic and biotic stress stimuli. In this chapter, optimized protocols of spectrophotometric measurement of GSNOR enzymatic activity and activity staining in native polyacrylamide gels in plant GSNOR are presented.


Assuntos
Aldeído Oxirredutases/metabolismo , Ensaios Enzimáticos/métodos , Plantas/enzimologia , S-Nitrosotióis/metabolismo , Fluorescência , NAD/química , Eletroforese em Gel de Poliacrilamida Nativa , Óxido Nítrico/metabolismo , Nitrosação , Extratos Vegetais/isolamento & purificação , Extratos Vegetais/metabolismo , S-Nitrosoglutationa/síntese química , S-Nitrosoglutationa/química , Coloração e Rotulagem/métodos , Fluxo de Trabalho
9.
Biomolecules ; 9(9)2019 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-31438648

RESUMO

S-nitrosoglutathione reductase (GSNOR) exerts crucial roles in the homeostasis of nitric oxide (NO) and reactive nitrogen species (RNS) in plant cells through indirect control of S-nitrosation, an important protein post-translational modification in signaling pathways of NO. Using cultivated and wild tomato species, we studied GSNOR function in interactions of key enzymes of reactive oxygen species (ROS) metabolism with RNS mediated by protein S-nitrosation during tomato root growth and responses to salinity and cadmium. Application of a GSNOR inhibitor N6022 increased both NO and S-nitrosothiol levels and stimulated root growth in both genotypes. Moreover, N6022 treatment, as well as S-nitrosoglutathione (GSNO) application, caused intensive S-nitrosation of important enzymes of ROS metabolism, NADPH oxidase (NADPHox) and ascorbate peroxidase (APX). Under abiotic stress, activities of APX and NADPHox were modulated by S-nitrosation. Increased production of H2O2 and subsequent oxidative stress were observed in wild Solanumhabrochaites, together with increased GSNOR activity and reduced S-nitrosothiols. An opposite effect occurred in cultivated S. lycopersicum, where reduced GSNOR activity and intensive S-nitrosation resulted in reduced ROS levels by abiotic stress. These data suggest stress-triggered disruption of ROS homeostasis, mediated by modulation of RNS and S-nitrosation of NADPHox and APX, underlies tomato root growth inhibition by salinity and cadmium stress.


Assuntos
Aldeído Oxirredutases/metabolismo , Cádmio/toxicidade , Proteínas de Plantas/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Cloreto de Sódio/farmacologia , Solanum lycopersicum/efeitos dos fármacos , Ascorbato Peroxidases/metabolismo , Benzamidas/química , Benzamidas/metabolismo , Benzamidas/farmacologia , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , NADPH Oxidases/metabolismo , Óxido Nítrico/metabolismo , Nitrosação , Estresse Oxidativo/efeitos dos fármacos , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Pirróis/química , Pirróis/metabolismo , Pirróis/farmacologia , Espécies Reativas de Nitrogênio/química , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/química , S-Nitrosoglutationa/farmacologia , S-Nitrosotióis/metabolismo , Solanum/crescimento & desenvolvimento , Solanum/metabolismo , Estresse Fisiológico
10.
Antioxidants (Basel) ; 8(4)2019 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30999668

RESUMO

Reactive oxygen species (ROS) have been recognized as important signaling compoundsof major importance in a number of developmental and physiological processes in plants. Theexistence of cellular compartments enables efficient redox compartmentalization and ensuresproper functioning of ROS-dependent signaling pathways. Similar to other organisms, theproduction of individual ROS in plant cells is highly localized and regulated bycompartment-specific enzyme pathways on transcriptional and post-translational level. ROSmetabolism and signaling in specific compartments are greatly affected by their chemicalinteractions with other reactive radical species, ROS scavengers and antioxidant enzymes. Adysregulation of the redox status, as a consequence of induced ROS generation or decreasedcapacity of their removal, occurs in plants exposed to diverse stress conditions. During stresscondition, strong induction of ROS-generating systems or attenuated ROS scavenging can lead tooxidative or nitrosative stress conditions, associated with potential damaging modifications of cellbiomolecules. Here, we present an overview of compartment-specific pathways of ROS productionand degradation and mechanisms of ROS homeostasis control within plant cell compartments.

11.
Plants (Basel) ; 8(2)2019 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795534

RESUMO

S-nitrosation has been recognized as an important mechanism of protein posttranslational regulations, based on the attachment of a nitroso group to cysteine thiols. Reversible S-nitrosation, similarly to other redox-base modifications of protein thiols, has a profound effect on protein structure and activity and is considered as a convergence of signaling pathways of reactive nitrogen and oxygen species. In plant, S-nitrosation is involved in a wide array of cellular processes during normal development and stress responses. This review summarizes current knowledge on S-nitrosoglutathione reductase (GSNOR), a key enzyme which regulates intracellular levels of S-nitrosoglutathione (GSNO) and indirectly also of protein S-nitrosothiols. GSNOR functions are mediated by its enzymatic activity, which catalyzes irreversible GSNO conversion to oxidized glutathione within the cellular catabolism of nitric oxide. GSNOR is involved in the maintenance of balanced levels of reactive nitrogen species and in the control of cellular redox state. Multiple functions of GSNOR in plant development via NO-dependent and -independent signaling mechanisms and in plant defense responses to abiotic and biotic stress conditions have been uncovered. Extensive studies of plants with down- and upregulated GSNOR, together with application of transcriptomics and proteomics approaches, seem promising for new insights into plant S-nitrosothiol metabolism and its regulation.

12.
Planta ; 249(3): 739-749, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30374914

RESUMO

MAIN CONCLUSION: The level of resistance induced in different tomato genotypes after ß-CRY treatment correlated with the upregulation of defence genes, but not sterol binding and involved ethylene and jasmonic acid signalling. Elicitins, a family of small proteins secreted by Phytophthora and Pythium spp., are the most well-known microbe-associated molecular patterns of oomycetes, a lineage of fungus-like organisms that include many economically significant crop pathogens. The responses of tomato plants to elicitin INF1 produced by Phytophthora infestans have been studied extensively. Here, we present studies on the responses of three tomato genotypes to ß-cryptogein (ß-CRY), a potent elicitin secreted by Phytophthora cryptogea that induces hypersensitive response (HR) cell death in tobacco plants and confers greater resistance to oomycete infection than acidic elicitins like INF1. We also studied ß-CRY mutants impaired in sterol binding (Val84Phe) and interaction with the binding site on tobacco plasma membrane (Leu41Phe), because sterol binding was suggested to be important in INF1-induced resistance. Treatment with ß-CRY or the Val84Phe mutant induced resistance to powdery mildew caused by the pathogen Pseudoidium neolycopersici, but not the HR cell death observed in tobacco and potato plants. The level of resistance induced in different tomato genotypes correlated with the upregulation of defence genes including defensins, ß-1,3-glucanases, heveins, chitinases, osmotins, and PR1 proteins. Treatment with the Leu41Phe mutant did not induce this upregulation, suggesting similar elicitin recognition in tomato and tobacco. However, here ß-CRY activated ethylene and jasmonic acid signalling, but not salicylic acid signalling, demonstrating that elicitins activate different downstream signalling processes in different plant species. This could potentially be exploited to enhance the resistance of Phytophthora-susceptible crops.


Assuntos
Ciclopentanos/metabolismo , Etilenos/metabolismo , Proteínas Fúngicas/metabolismo , Oxilipinas/metabolismo , Doenças das Plantas/microbiologia , Reguladores de Crescimento de Plantas/metabolismo , Transdução de Sinais , Solanum lycopersicum/metabolismo , Interações Hospedeiro-Patógeno , Peróxido de Hidrogênio/metabolismo , Solanum lycopersicum/microbiologia , Solanum lycopersicum/fisiologia , Phytophthora , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Pythium , Espécies Reativas de Oxigênio/metabolismo , Ácido Salicílico/metabolismo
13.
Methods Mol Biol ; 1747: 267-280, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29600466

RESUMO

S-nitrosation, the attachment of a nitroso group to cysteine thiols, has been recognized as an important posttranslational modification of proteins by nitric oxide and related reactive nitrogen species. Mechanisms and significance of S-nitrosation in the regulation of the structure and activity of proteins have been extensively studied in animal and plant systems. In plants, protein S-nitrosation is involved in signaling pathways of plant hormones and regulators during plant growth and development and in responses to abiotic and biotic stress stimuli. S-nitrosoglutathione reductase (GSNOR) has been identified as a key enzyme controlling the intracellular level of S-nitrosothiols. GSNOR irreversibly degrades S-nitrosoglutathione (GSNO), the major low molecular weight S-nitrosothiol involved in the formation of protein S-nitrosothiols through transnitrosylation. GSNOR level and activity in plant cells are modulated during plant development and in response to external stimuli such as pathogen infection. In this chapter, we give a detailed description of the immunochemical detection of the GSNOR protein in plant samples.


Assuntos
Aldeído Oxirredutases/metabolismo , Plantas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Plantas/metabolismo , S-Nitrosoglutationa/metabolismo , S-Nitrosotióis/metabolismo
14.
Planta ; 247(5): 1203-1215, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29417270

RESUMO

MAIN CONCLUSION: Resistant Lactuca spp. genotypes can efficiently modulate levels of S-nitrosothiols as reactive nitrogen species derived from nitric oxide in their defence mechanism against invading biotrophic pathogens including lettuce downy mildew. S-Nitrosylation belongs to principal signalling pathways of nitric oxide in plant development and stress responses. Protein S-nitrosylation is regulated by S-nitrosoglutathione reductase (GSNOR) as a key catabolic enzyme of S-nitrosoglutathione (GSNO), the major intracellular S-nitrosothiol. GSNOR expression, level and activity were studied in leaves of selected genotypes of lettuce (Lactuca sativa) and wild Lactuca spp. during interactions with biotrophic mildews, Bremia lactucae (lettuce downy mildew), Golovinomyces cichoracearum (lettuce powdery mildew) and non-pathogen Pseudoidium neolycopersici (tomato powdery mildew) during 168 h post inoculation (hpi). GSNOR expression was increased in all genotypes both in the early phase at 6 hpi and later phase at 72 hpi, with a high increase observed in L. sativa UCDM2 responses to all three pathogens. GSNOR protein also showed two-phase increase, with highest changes in L. virosa-B. lactucae and L. sativa cv. UCDM2-G. cichoracearum pathosystems, whereas P. neolycopersici induced GSNOR protein at 72 hpi in all genotypes. Similarly, a general pattern of modulated GSNOR activities in response to biotrophic mildews involves a two-phase increase at 6 and 72 hpi. Lettuce downy mildew infection caused GSNOR activity slightly increased only in resistant L. saligna and L. virosa genotypes; however, all genotypes showed increased GSNOR activity both at 6 and 72 hpi by lettuce powdery mildew. We observed GSNOR-mediated decrease of S-nitrosothiols as a general feature of Lactuca spp. response to mildew infection, which was also confirmed by immunohistochemical detection of GSNOR and GSNO in infected plant tissues. Our results demonstrate that GSNOR is differentially modulated in interactions of susceptible and resistant Lactuca spp. genotypes with fungal mildews and uncover the role of S-nitrosylation in molecular mechanisms of plant responses to biotrophic pathogens.


Assuntos
Aldeído Oxirredutases/metabolismo , Resistência à Doença/fisiologia , Lactuca/fisiologia , Doenças das Plantas/microbiologia , S-Nitrosotióis/metabolismo , Western Blotting , Regulação da Expressão Gênica de Plantas , Lactuca/enzimologia , Microscopia Confocal , Oomicetos/patogenicidade , Reação em Cadeia da Polimerase
15.
Front Physiol ; 8: 826, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29114232

RESUMO

Developmental transitions and stress reactions in both eukaryotes and prokaryotes are tightly linked with fast and localized modifications in concentrations of reactive oxygen and nitrogen species (ROS and RNS). Fluorescent microscopic analyses are widely applied to detect localized production of ROS and RNS in vivo. In this mini-review we discuss the biological characteristics of studied material (cell wall, extracellular matrix, and tissue complexity) and its handling (concentration of probes, effect of pressure, and higher temperature) which influence results of histochemical staining with "classical" fluorochromes. Future perspectives of ROS and RNS imaging with newly designed probes are briefly outlined.

16.
Biochem Biophys Res Commun ; 494(1-2): 27-33, 2017 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-29061305

RESUMO

Nitric oxide (NO) is considered as a signalling molecule involved in a variety of important physiological and pathological processes in plant and animal systems. The major pathway of NO reactions in vivo represents S-nitrosation of thiols to form S-nitrosothiols. S-nitrosoglutathione reductase (GSNOR) is the key enzyme in the degradation pathway of S-nitrosoglutathione (GSNO), a low-molecular weight adduct of NO and glutathione. GSNOR indirectly regulates the level of protein S-nitrosothiol in the cells. This study was focused on the dynamic regulation of the activity of plant GSNORs through reversible S-nitrosation and/or oxidative modifications of target cysteine residues. Pre-incubation with NO/NO- donors or hydrogen peroxide resulted in a decreased reductase and dehydrogenase activity of all studied plant GSNORs. Incubation with thiol reducing agent completely reversed inhibitory effects of nitrosative modifications and partially also oxidative inhibition. In biotin-labelled samples, S-nitrosation of plant GSNORs was confirmed after immunodetection and using mass spectrometry S-nitrosation of conserved Cys271 was identified in tomato GSNOR. Negative regulation of constitutive GSNOR activity in vivo by nitrosative or oxidative modifications might present an important mechanism to control GSNO levels, a critical mediator of the downstream signalling effects of NO, as well as for formaldehyde detoxification in dehydrogenase reaction mode.


Assuntos
Aldeído Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Aldeído Oxirredutases/antagonistas & inibidores , Aldeído Oxirredutases/química , Animais , Cisteína/química , Cisteína/metabolismo , Peróxido de Hidrogênio/farmacologia , Solanum lycopersicum/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/metabolismo , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/farmacologia , Nitrosação , Oxirredução , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/química , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , S-Nitrosoglutationa/metabolismo , S-Nitrosotióis/metabolismo , Transdução de Sinais
17.
Ann Bot ; 119(5): 829-840, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-27660055

RESUMO

Background and Aims: Current strategies for increased crop protection of susceptible tomato plants against pathogen infections include treatment with synthetic chemicals, application of natural pathogen-derived compounds or transfer of resistance genes from wild tomato species within breeding programmes. In this study, a series of 45 genes potentially involved in defence mechanisms was retrieved from the genome sequence of inbred reference tomato cultivar Solanum lycopersicum 'Heinz 1706'. The aim of the study was to analyse expression of these selected genes in wild and cultivated tomato plants contrasting in resistance to the biotrophic pathogen Oidium neolycopersici , the causative agent of powdery mildew. Plants were treated either solely with potential resistance inducers or by inducers together with the pathogen. Methods: The resistance against O. neolycopersici infection as well as RT-PCR-based analysis of gene expression in response to the oomycete elicitor oligandrin and chemical agent ß-aminobutyric acid (BABA) were investigated in the highly susceptible domesticated inbred genotype Solanum lycopersicum 'Amateur' and resistant wild genotype Solanum habrochaites . Key Results: Differences in basal expression levels of defensins, germins, ß-1,3-glucanases, heveins, chitinases, osmotins and PR1 proteins in non-infected and non-elicited plants were observed between the highly resistant and susceptible genotypes. Moreover, these defence genes showed an extensive up-regulation following O. neolycopersici infection in both genotypes. Application of BABA and elicitin induced expression of multiple defence-related transcripts and, through different mechanisms, enhanced resistance against powdery mildew in the susceptible tomato genotype. Conclusions: The results indicate that non-specific resistance in the resistant genotype S. habrochaites resulted from high basal levels of transcripts with proven roles in defence processes. In the susceptible genotype S. lycopersicum 'Amateur', oligandrin- and BABA-induced resistance involved different signalling pathways, with BABA-treated leaves displaying direct activation of the ethylene-dependent signalling pathway, in contrast to previously reported jasmonic acid-mediated signalling for elicitins.


Assuntos
Aminobutiratos/farmacologia , Ascomicetos/fisiologia , Regulação da Expressão Gênica de Plantas , Doenças das Plantas/microbiologia , Sesquiterpenos/farmacologia , Solanum lycopersicum/genética , Solanum/genética , Resistência à Doença , Solanum lycopersicum/imunologia , Solanum lycopersicum/microbiologia , Doenças das Plantas/imunologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Solanum/imunologia , Solanum/microbiologia , Regulação para Cima
18.
Nitric Oxide ; 68: 68-76, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27940345

RESUMO

Cellular homeostasis of S-nitrosoglutathione (GSNO), a major cache of nitric oxide bioactivity in plants, is controlled by the NADH-dependent S-nitrosoglutathione reductase (GSNOR) belonging to the family of class III alcohol dehydrogenases (EC 1.1.1.1). GSNOR is a key regulator of S-nitrosothiol metabolism and is involved in plant responses to abiotic and biotic stresses. This study was focused on GSNOR from two important crop plants, cauliflower (Brassica oleracea var. botrytis, BoGSNOR) and lettuce (Lactuca sativa, LsGSNOR). Both purified recombinant GSNORs were characterized in vitro and found to exists as dimers, exhibit high thermal stability and substrate preference towards GSNO, although both enzymes have dehydrogenase activity with a broad range of long-chain alcohols and ω-hydroxy fatty acids in presence of NAD+. Data on enzyme affinities to their cofactors NADH and NAD+ obtained by isothermal titration calorimetry suggest the high affinity to NADH might underline the GSNOR capacity to function in the intracellular environment. GSNOR activity and gene expression peak during early developmental stages of lettuce and cauliflower at 20 and 30 days after germination, respectively. GSNOR activity was also measured in four other Lactuca spp. genotypes with different degree of resistance to biotrophic pathogen Bremia lactucae. Higher GSNOR activities were found in non-infected plants of susceptible genotypes L. sativa UCDM2 and L. serriola as compared to resistant genotypes. GSNOR and GSNO were localized by confocal laser scanning microscopy in vascular bundles and in epidermal and parenchymal cells of leaf cross-sections. The presented results bring new insight in the role of GSNOR in the regulation of S-nitrosothiol levels in plant growth and development.


Assuntos
Aldeído Oxirredutases/metabolismo , Brassica/enzimologia , Lactuca/enzimologia , Oxirredutases/metabolismo , Desenvolvimento Vegetal/fisiologia , Aldeído Oxirredutases/genética , Brassica/genética , Brassica/crescimento & desenvolvimento , Genótipo , Lactuca/genética , Lactuca/crescimento & desenvolvimento , Oxirredutases/genética
19.
Food Chem Toxicol ; 96: 50-61, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27456126

RESUMO

Silver nanoparticles (AgNPs) are the most frequently applied nanomaterials. In our experiments, we tested AgNPs (size 27 nm) manufactured by the Tollens process. Physico-chemical methods (TEM, DLS, AFM and spectrophotometry) were used for characterization and imaging of AgNPs. The effects of AgNPs and Ag(+) were studied in two experimental models (plant and mammalian cells). Human keratinocytes (SVK14) and mouse fibroblasts (NIH3T3) cell lines were selected to evaluate the cytotoxicity and genotoxicity effect on mammalian cells. Higher sensitivity to AgNPs and Ag(+) was observed in NIH3T3 than in SVK14 cells. AgNPs accumulated in the nucleus of NIH3T3 cells, caused DNA damage and increased the number of apoptotic and necrotic cells. Three genotypes of Solanum spp. (S. lycopersicum cv. Amateur, S. chmielewskii, S. habrochaites) were selected to test the toxicity of AgNPs and Ag(+) on the plant cells. The highest values of peroxidase activity and lipid peroxidation were recorded after the treatment of S. habrochaites genotype with AgNPs. Increased ROS levels were likely the reason for observed damaged membranes in S. habrochaites. We found that the cytotoxic and genotoxic effects of AgNPs depend not only on the characteristics of nanoparticles, but also on the type of cells that are treated with AgNPs.


Assuntos
Apoptose/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Nanopartículas Metálicas/administração & dosagem , Prata/farmacologia , Solanum lycopersicum/citologia , Animais , Western Blotting , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Ensaio Cometa , Humanos , Técnicas In Vitro , Solanum lycopersicum/efeitos dos fármacos , Nanopartículas Metálicas/química , Camundongos , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Prata/química , Análise Espectral Raman
20.
Methods Mol Biol ; 1424: 175-89, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27094420

RESUMO

S-nitrosoglutathione reductase (GSNOR) is considered a key enzyme in the regulation of intracellular levels of S-nitrosoglutathione and protein S-nitrosylation. As a part of nitric oxide catabolism, GSNOR catalyzes the irreversible decomposition of GSNO to oxidized glutathione. GSNOR is involved in the regulation of plant growth and development, mediated by NO-dependent signaling mechanisms, and is known to play important roles in plant responses to various abiotic and biotic stress conditions. Here we present optimized protocols to determine GSNOR enzyme activities in plant samples by spectrophotometric measurements and by activity staining after the native polyacrylamide gel electrophoresis.


Assuntos
Aldeído Oxirredutases/metabolismo , Plantas/enzimologia , Eletroforese em Gel de Poliacrilamida Nativa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...