Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mBio ; 13(3): e0065122, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35532161

RESUMO

Although we know the generally appreciated significant roles of microbes in sea ice and polar waters, detailed studies of virus-host systems from such environments have been so far limited by only a few available isolates. Here, we investigated infectivity under various conditions, infection cycles, and genetic diversity of the following Antarctic sea ice bacteriophages: Paraglaciecola Antarctic GD virus 1 (PANV1), Paraglaciecola Antarctic JLT virus 2 (PANV2), Octadecabacter Antarctic BD virus 1 (OANV1), and Octadecabacter Antarctic DB virus 2 (OANV2). The phages infect common sea ice bacteria belonging to the genera Paraglaciecola or Octadecabacter. Although the phages are marine and cold-active, replicating at 0°C to 5°C, they all survived temporal incubations at ≥30°C and remained infectious without any salts or supplemented only with magnesium, suggesting a robust virion assembly maintaining integrity under a wide range of conditions. Host recognition in the cold proved to be effective, and the release of progeny viruses occurred as a result of cell lysis. The analysis of viral genome sequences showed that nearly one-half of the gene products of each virus are unique, highlighting that sea ice harbors unexplored virus diversity. Based on predicted genes typical for tailed double-stranded DNA phages, we suggest placing the four studied viruses in the class Caudoviricetes. Searching against viral sequences from metagenomic assemblies, we revealed that related viruses are not restricted to Antarctica but are also found in distant marine environments. IMPORTANCE Very little is known about sea ice microbes despite the significant role played by sea ice in the global oceans as well as microbial input into biogeochemical cycling. Studies on the sea ice viruses have been typically limited to -omics-based approaches and microscopic examinations of sea ice samples. To date, only four cultivable viruses have been isolated from Antarctic sea ice. Our study of these unique isolates advances the understanding of the genetic diversity of viruses in sea ice environments, their interactions with host microbes, and possible links to other biomes. Such information contributes to more accurate future sea ice biogeochemical models.


Assuntos
Bacteriófagos , Camada de Gelo , Regiões Antárticas , Variação Genética , Interações entre Hospedeiro e Microrganismos , Camada de Gelo/microbiologia , Água do Mar/microbiologia
2.
FEMS Microbiol Ecol ; 94(4)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29481638

RESUMO

Viruses are recognized as important actors in ocean ecology and biogeochemical cycles, but many details are not yet understood. We participated in a winter expedition to the Weddell Sea, Antarctica, to isolate viruses and to measure virus-like particle abundance (flow cytometry) in sea ice. We isolated 59 bacterial strains and the first four Antarctic sea-ice viruses known (PANV1, PANV2, OANV1 and OANV2), which grow in bacterial hosts belonging to the typical sea-ice genera Paraglaciecola and Octadecabacter. The viruses were specific for bacteria at the strain level, although OANV1 was able to infect strains from two different classes. Both PANV1 and PANV2 infected 11/15 isolated Paraglaciecola strains that had almost identical 16S rRNA gene sequences, but the plating efficiencies differed among the strains, whereas OANV1 infected 3/7 Octadecabacter and 1/15 Paraglaciecola strains and OANV2 1/7 Octadecabacter strains. All the phages were cold-active and able to infect their original host at 0°C and 4°C, but not at higher temperatures. The results showed that virus-host interactions can be very complex and that the viral community can also be dynamic in the winter-sea ice.


Assuntos
Bacteriófagos/classificação , Bacteriófagos/crescimento & desenvolvimento , Camada de Gelo/microbiologia , Camada de Gelo/virologia , Proteobactérias/virologia , Regiões Antárticas , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Ecologia , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , RNA Ribossômico 16S/genética , Estações do Ano , Água do Mar/microbiologia , Água do Mar/virologia
3.
ISME J ; 11(10): 2345-2355, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28708127

RESUMO

Antarctic sea-ice bacterial community composition and dynamics in various developmental stages were investigated during the austral winter in 2013. Thick snow cover likely insulated the ice, leading to high (<4 µg l-1) chlorophyll-a (chl-a) concentrations and consequent bacterial production. Typical sea-ice bacterial genera, for example, Octadecabacter, Polaribacter and Glaciecola, often abundant in spring and summer during the sea-ice algal bloom, predominated in the communities. The variability in bacterial community composition in the different ice types was mainly explained by the chl-a concentrations, suggesting that as in spring and summer sea ice, the sea-ice bacteria and algae may also be coupled during the Antarctic winter. Coupling between the bacterial community and sea-ice algae was further supported by significant correlations between bacterial abundance and production with chl-a. In addition, sulphate-reducing bacteria (for example, Desulforhopalus) together with odour of H2S were observed in thick, apparently anoxic ice, suggesting that the development of the anaerobic bacterial community may occur in sea ice under suitable conditions. In all, the results show that bacterial community in Antarctic sea ice can stay active throughout the winter period and thus possible future warming of sea ice and consequent increase in bacterial production may lead to changes in bacteria-mediated processes in the Antarctic sea-ice zone.


Assuntos
Bactérias/isolamento & purificação , Clorofila/metabolismo , Camada de Gelo/microbiologia , Anaerobiose , Regiões Antárticas , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Clorofila A , Filogenia , Estações do Ano
4.
Environ Microbiol ; 17(10): 3628-41, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25156651

RESUMO

Heterotrophic bacteria are the major prokaryotic component of the Baltic Sea ice microbiome, and it is postulated that phages are among their major parasites. In this study, we sequenced the complete genomes of six earlier reported phage isolates from the Baltic Sea ice infecting Shewanella sp. and Flavobacterium sp. hosts as well as characterized the phage-host interactions. Based on the genome sequences, the six phages were classified into five new genera. Only two phages, 1/4 and 1/40, both infecting Shewanella sp. strains, showed significant nucleotide sequence similarity to each other and could be grouped into the same genus. These two phages are also related to Vibrio-specific phages sharing approximately 25% of the predicted gene products. Nevertheless, cross-titrations showed that the cold-active phages studied are host specific: none of the seven additionally tested, closely related Shewanella strains served as hosts for the phages. Adsorption experiments of two Shewanella phages, 1/4 and 3/49, conducted at 4 °C and at 15 °C revealed relatively fast adsorption rates that are, for example, comparable with those of phages infective in mesophilic conditions. Despite the small number of Shewanella phages characterized here, we could already find different types of phage-host interactions including a putative abortive infection.


Assuntos
Bacteriófagos/classificação , Flavobacterium/virologia , Camada de Gelo/virologia , Shewanella/virologia , Vibrio/virologia , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Sequência de Bases , DNA Bacteriano/genética , DNA Viral/genética , Genoma Viral/genética , Processos Heterotróficos , Dados de Sequência Molecular , Oceanos e Mares , Análise de Sequência de DNA
5.
Extremophiles ; 18(1): 121-30, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24297705

RESUMO

In search for sea ice bacteria and their phages from the Baltic Sea ice, two ice samples were collected from land-fast ice in a south-west Finland coastal site in February and March 2011. Bacteria were isolated from the melted sea ice samples and phages were screened from the same samples for 43 purified isolates. Plaque-producing phages were found for 15 bacterial isolates at 3 °C. Ten phage isolates were successfully plaque purified and eight of them were chosen for particle purification to analyze their morphology and structural proteins. Phage 1/32 infecting an isolate affiliated to phylum Bacteroidetes (Flavobacterium sp.) is a siphovirus and six phages infecting isolates affiliated to γ-Proteobacteria (Shewanella sp.) hosts were myoviruses. Cross titrations between the hosts showed that all studied phages are host specific. Phage solutions, host growth and phage infection were tested in different temperatures revealing phage temperature tolerance up to 45 °C, whereas phage infection was in most of the cases retarded above 15 °C. This study is the first to report isolation and cultivation of ice bacteria and cold-active phages from the Baltic Sea ice.


Assuntos
Bacteriófagos/isolamento & purificação , Flavobacterium/virologia , Camada de Gelo/microbiologia , Água do Mar/microbiologia , Shewanella/virologia , Temperatura Baixa , Finlândia , Flavobacterium/isolamento & purificação , Shewanella/isolamento & purificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...