Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Part Fibre Toxicol ; 15(1): 28, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29970116

RESUMO

BACKGROUND: Silica nanoparticles (SiO2-NPs) are naturally enriched and broadly utilized in the manufacturing industry. While previous studies have demonstrated toxicity in neuronal cell lines after SiO2-NPs exposure, the role of SiO2-NPs in neurodegeneration is largely unknown. Here, we evaluated the effects of SiO2-NPs-exposure on behavior, neuropathology, and synapse in young adult mice and primary cortical neuron cultures. RESULTS: Male C57BL/6 N mice (3 months old) were exposed to either vehicle (sterile PBS) or fluorescein isothiocyanate (FITC)-tagged SiO2-NPs (NP) using intranasal instillation. Behavioral tests were performed after 1 and 2 months of exposure. We observed decreased social activity at both time points as well as anxiety and cognitive impairment after 2 months in the NP-exposed mice. NP deposition was primarily detected in the medial prefrontal cortex and the hippocampus. Neurodegeneration-like pathological changes, including reduced Nissl staining, increased tau phosphorylation, and neuroinflammation, were also present in the brains of NP-exposed mice. Furthermore, we observed NP-induced impairment in exocytosis along with decreased synapsin I and increased synaptophysin expression in the synaptosome fractions isolated from the frontal cortex as well as primary neuronal cultures. Extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) were also activated in the frontal cortex of NP-exposed mice. Moreover, inhibition of ERK activation prevented NP-mediated changes in exocytosis in cultured neurons, highlighting a key role in the changes induced by NP exposure. CONCLUSIONS: Intranasal instillation of SiO2-NPs results in mood dysfunction and cognitive impairment in young adult mice and causes neurodegeneration-like pathology and synaptic changes via ERK activation.


Assuntos
Comportamento Animal/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Nanopartículas/toxicidade , Neurônios/efeitos dos fármacos , Dióxido de Silício/toxicidade , Sinapses/efeitos dos fármacos , Animais , Exocitose/efeitos dos fármacos , Lobo Frontal/efeitos dos fármacos , Lobo Frontal/patologia , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos Endogâmicos C57BL , Neurônios/patologia , Tamanho da Partícula , Propriedades de Superfície , Sinapses/enzimologia , Sinapses/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...