Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chemosphere ; 215: 248-260, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30317096

RESUMO

Gold nanoparticles (AuNPs) are found in a wide range of applications and therefore expected to present increasing levels in the environment. There is however limited knowledge concerning the potential toxicity of AuNPs as well as their combined effects with other pollutants. Hence, the present study aimed to investigate the effects of AuNPs alone and combined with the pharmaceutical gemfibrozil (GEM) on different biological responses (behaviour, neurotransmission, biotransformation and oxidative stress) in one of the most consumed fish in southern Europe, the seabream Sparus aurata. Fish were exposed for 96 h to waterborne 40 nm AuNPs with two coatings - citrate and polyvinylpyrrolidone (PVP), alone or combined with GEM. Antioxidant defences were induced in liver and gills upon both AuNPs exposure. Decreased swimming performance (1600 µg.L-1) and oxidative damage in gills (4 and 80 µg.L-1) were observed following exposure to polyvinylpyrrolidone coated gold nanoparticles (PVP-AuNPs). Generally, accumulation of gold in fish tissues and deleterious effects in S. aurata were higher for PVP-AuNPs than for cAuNPs exposures. Although AuNPs and GEM combined effects in gills were generally low, in liver, they were higher than the predicted. The accumulation and effects of AuNPs showed to be dependent on the size, coating, surface charge and aggregation/agglomeration state of nanoparticles. Additionally, it was tissue' specific and dependent on the presence of other contaminants. Although, gold intake by humans is expected to not exceed the estimated tolerable daily intake, it is highly recommended to keep it on track due to the increasing use of AuNPs.


Assuntos
Exposição Ambiental/análise , Genfibrozila/toxicidade , Ouro/toxicidade , Nanopartículas Metálicas/toxicidade , Dourada/metabolismo , Poluentes Químicos da Água/toxicidade , Animais , Antioxidantes/metabolismo , Comportamento Animal/efeitos dos fármacos , Biotransformação/efeitos dos fármacos , Europa (Continente) , Genfibrozila/metabolismo , Genfibrozila/farmacocinética , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Ouro/metabolismo , Ouro/farmacocinética , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Oxirredução , Estresse Oxidativo/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
2.
Chemosphere ; 220: 11-19, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30576896

RESUMO

Due to their diverse applications, gold nanoparticles (AuNPs) are expected to increase of in the environment, although few studies are available on their mode of action in aquatic organisms. The genotoxicity of AuNPs, alone or combined with the human pharmaceutical gemfibrozil (GEM), an environmental contaminant frequently detected in aquatic systems, including in marine ecosystems, was examined using gilthead seabream erythrocytes as a model system. Fish were exposed for 96 h to 4, 80 and 1600 µg L-1 of 40 nm AuNPs with two coatings - citrate or polyvinylpyrrolidone; GEM (150 µg L-1); and a combination of AuNPs and GEM (80 µg L-1 AuNPs + 150 µg L-1 GEM). AuNPs induced DNA damage and increased nuclear abnormalities levels, with coating showing an important role in the toxicity of AuNPs to fish. The combined exposures of AuNPs and GEM produced an antagonistic response, with observed toxic effects in the mixtures being lower than the predicted. The results raise concern about the safety of AuNPs and demonstrate interactions between them and other contaminants.


Assuntos
Dano ao DNA/efeitos dos fármacos , Genfibrozila/toxicidade , Nanopartículas Metálicas/toxicidade , Mutagênicos , Animais , Organismos Aquáticos , Interações Medicamentosas , Eritrócitos/efeitos dos fármacos , Ouro/toxicidade , Humanos , Dourada/sangue , Dourada/fisiologia
3.
Aquat Toxicol ; 200: 266-274, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29807214

RESUMO

Lipid regulators are among the most prescribed human pharmaceuticals worldwide. Gemfibrozil, which belongs to this class of pharmaceuticals, is one of the most frequently encountered in the aquatic environment. However, there is limited information concerning the mechanisms involved in gemfibrozil effects to aquatic organisms, particularly to marine organisms. Based on this knowledge gap, the current study aimed to assess biochemical and behavioral effects following a sublethal exposure to gemfibrozil (1.5, 15, 150, 1500 and 15,000 µg L-1) in the estuarine/marine fish Sparus aurata. After the exposure to 1.5 µg L-1 of gemfibrozil, fish had reduced ability to swim against a water flow and increased lipid peroxidation in the liver. At concentrations between 15-15,000 µg L-1, the activities of some enzymes involved in antioxidant defense were induced, appearing to be sufficient to prevent oxidative damage. Depending on the organ, different responses to gemfibrozil were displayed, with enzymes like catalase being more stimulated in gills, whereas glutathione peroxidase was more activated in liver. Although there were no obvious concentration-response relationships, the integrated biomarker response version 2 (IBRv2) analysis revealed that the highest concentrations of gemfibrozil (between 150-15,000 µg L-1) caused more alterations. All the tested concentrations of gemfibrozil induced effects in S. aurata, in terms of behavior and/or oxidative stress responses. Oxidative damage was found at a concentration that is considered environmentally relevant, suggesting a potential of this pharmaceutical to impact fish populations.


Assuntos
Biomarcadores/metabolismo , Genfibrozila/toxicidade , Dourada/metabolismo , Animais , Encéfalo/enzimologia , Catalase/metabolismo , Colinesterases/metabolismo , Brânquias/efeitos dos fármacos , Brânquias/metabolismo , Glutationa Peroxidase/metabolismo , Humanos , Fígado/efeitos dos fármacos , Fígado/metabolismo , Músculos/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Natação/fisiologia , Poluentes Químicos da Água/toxicidade
4.
Artigo em Inglês | MEDLINE | ID: mdl-28735742

RESUMO

Widespread use of pharmaceuticals and suboptimal wastewater treatment have led to increased levels of these substances in aquatic ecosystems. Lipid-lowering drugs such as gemfibrozil, which are among the most abundant human pharmaceuticals in the environment, may have deleterious effects on aquatic organisms. We examined the genotoxicity of gemfibrozil in a fish species, the gilthead seabream (Sparus aurata), which is commercially important in southern Europe. Following 96-h waterborne exposure, molecular (erythrocyte DNA strand breaks) and cytogenetic (micronuclei and other nuclear abnormalities in cells) endpoints were measured. Gemfibrozil was positive in both endpoints, at environmentally relevant concentrations, a result that raises concerns about the potential genotoxic effects of the drug in recipient waters.


Assuntos
Quebras de DNA , Eritrócitos/efeitos dos fármacos , Genfibrozila/toxicidade , Micronúcleos com Defeito Cromossômico/induzido quimicamente , Dourada/genética , Poluentes Químicos da Água/toxicidade , Animais , Ensaio Cometa , Relação Dose-Resposta a Droga , Eritrócitos/patologia , Testes para Micronúcleos , Dourada/sangue
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...