Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biomedicines ; 11(2)2023 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-36830971

RESUMO

Nanomedicine, a promising area of medicine, employs nanosized tools for the diagnosis, prevention, and treatment of disease. Particularly, liposomes, lipid-based nanovesicles, are currently one of the most successful nanosystems, with extensive applications in the clinic and an increasing pipeline of products in preclinical and clinical development. These versatile nanotechnological tools are biocompatible and biodegradable, and can load a variety of molecules and, ultimately, improve the therapeutic performance of drugs while minimizing undesired side effects. In this review, we provide a brief description on liposomes' composition and classification and mainly focus on their clinical use in various areas, including disease management (e.g., cancer, fungal and bacterial infections, ocular pathologies), analgesia, vaccination, diagnostics, and immunosuppression in organ transplantation. Herein are described examples of current liposomal products already in the clinic, as well as the most recent clinical trials involving liposomes as effective and safe nanomedicine tools.

2.
Pharmaceutics ; 14(12)2022 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-36559078

RESUMO

Designing new metallodrugs for anticancer therapy is a driving force in the scientific community. Aiming to contribute to this field, we hereby report the development of a Schiff base (H2L) derived from the condensation of 2-carbaldehyde-8-hydroxyquinoline with 2-hydrazinobenzothiazole and its complexation with transition metal ions. All compounds were characterised by analytical and spectroscopic techniques, which disclosed their structure: [Cu(HL)Cl], [Cu(HL)2], [Ni(HL)(acetate)], [Ni(HL)2], [Ru(HL)Cl(DMSO)], [VO(HL)2] and [Fe(HL)2Cl(H2O)]. Different binding modes were proposed, showing the ligand's coordination versatility. The ligand proton dissociation constants were determined, and the tested compounds showed high lipophilicity and light sensitivity. The stability of all complexes in aqueous media and their ability to bind to albumin were screened. Based on an antiproliferative in vitro screening, [Ni(HL)(acetate)] and [Ru(HL)Cl(DMSO)] were selected for further studies aiming to investigate their mechanisms of action and therapeutic potential towards colon cancer. The complexes displayed IC50 < 21 µM towards murine (CT-26) and human (HCT-116) colon cancer cell lines. Importantly, both complexes exhibited superior antiproliferative properties compared to the clinically approved 5-fluorouracil. [Ni(HL)(acetate)] induced cell cycle arrest in S phase in CT-26 cells. For [Ru(HL)Cl(DMSO)] this effect was observed in both colon cancer cell lines. Additionally, both compounds significantly inhibited cell migration particularly in the human colon cancer cell line, HCT-116. Overall, the therapeutic potential of both metal complexes was demonstrated.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...