Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biomed Res Int ; 2022: 2748962, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35909472

RESUMO

In order to address the global antivenom crisis, novel antivenoms need to present high therapeutic efficacy, broad neutralization ability against systemic and local damage, sufficient safety, and cost-effectiveness. Due to biological characteristics of camelid single-domain antibodies (VHH) such as high affinity, their ability to penetrate dense tissues, and facility for genetic manipulation, their application in antivenoms has expanded considerably. VHHs that are active against the metalloprotease BjussuMP-II from the snake Bothrops jararacussu were selected. After isolation of BjussuMP-II, a camelid was immunized with the purified toxin in order to construct the recombinant phage library. Following a round of biopanning, 52% of the selected clones were able to recognize BjussuMP-II in an ELISA assay. After sequencing, seven sequence profiles were identified. One selected clone (VHH61) showed cross-reactivity to B. brazili venom, but did not recognize the Crotalus and Lachesis genera, indicating specificity for the Bothrops genus. Through in vitro tests, the capacity to neutralize the toxicity triggered by BjussuMP-II was observed. Circular dichroism spectroscopy indicated a robust secondary structure for VHH61, and the calculated melting temperature (T M) for the clone was 56.4°C. In silico analysis, through molecular docking of anti-BjussuMP-II VHHs with metalloprotease, revealed their potential interaction with amino acids present in regions critical for the toxin's conformation and stability. The findings suggest that anti-BjussuMP-II VHHs may be beneficial in the development of next-generation antivenoms.


Assuntos
Bothrops , Venenos de Crotalídeos , Anticorpos de Domínio Único , Mordeduras de Serpentes , Animais , Antivenenos/uso terapêutico , Bothrops/metabolismo , Metaloproteases/metabolismo , Simulação de Acoplamento Molecular , Testes de Neutralização , Anticorpos de Domínio Único/farmacologia , Mordeduras de Serpentes/tratamento farmacológico
2.
Toxins (Basel) ; 10(4)2018 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-29596324

RESUMO

Toxic effects triggered by crotalic envenoming are mainly related to crotoxin (CTX), composed of a phospholipase A2 (CB) and a subunit with no toxic activity (CA). Camelids produce immunoglobulins G devoid of light chains, in which the antigen recognition domain is called VHH. Given their unique characteristics, VHHs were selected using Phage Display against CTX from Crotalus durissus terrificus. After three rounds of biopanning, four sequence profiles for CB (KF498602, KF498603, KF498604, and KF498605) and one for CA (KF498606) were revealed. All clones presented the VHH hallmark in FR2 and a long CDR3, with the exception of KF498606. After expressing pET22b-VHHs in E. coli, approximately 2 to 6 mg of protein per liter of culture were obtained. When tested for cross-reactivity, VHHs presented specificity for the Crotalus genus and were capable of recognizing CB through Western blot. KF498602 and KF498604 showed thermostability, and displayed affinity constants for CTX in the micro or nanomolar range. They inhibited in vitro CTX PLA2 activity, and CB cytotoxicity. Furthermore, KF498604 inhibited the CTX-induced myotoxicity in mice by 78.8%. Molecular docking revealed that KF498604 interacts with the CA–CB interface of CTX, seeming to block substrate access. Selected VHHs may be alternatives for the crotalic envenoming treatment.


Assuntos
Camelídeos Americanos/imunologia , Crotoxina/imunologia , Anticorpos de Domínio Único/imunologia , Animais , Crotoxina/toxicidade , Escherichia coli/genética , Masculino , Camundongos , Simulação de Acoplamento Molecular , Doenças Musculares/induzido quimicamente , Doenças Musculares/tratamento farmacológico , Anticorpos de Domínio Único/genética , Anticorpos de Domínio Único/uso terapêutico , Mordeduras de Serpentes/diagnóstico , Mordeduras de Serpentes/terapia
3.
Front Immunol ; 8: 653, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28649245

RESUMO

Due mainly to properties such as high affinity and antigen specificity, antibodies have become important tools for biomedical research, diagnosis, and treatment of several human diseases. When the objective is to administer them for therapy, strategies are used to reduce the heterologous protein immunogenicity and to improve pharmacokinetic and pharmacodynamic characteristics. Size minimization contributes to ameliorate these characteristics, while preserving the antigen-antibody interaction site. Since the discovery that camelids produce functional antibodies devoid of light chains, studies have proposed the use of single domains for biosensors, monitoring and treatment of tumors, therapies for inflammatory and neurodegenerative diseases, drug delivery, or passive immunotherapy. Despite an expected increase in antibody and related products in the pharmaceutical market over the next years, few research initiatives are related to the development of alternatives for helping to manage neglected tropical diseases (NTDs). In this review, we summarize developments of camelid single-domain antibodies (VHH) in the field of NTDs. Particular attention is given to VHH-derived products, i.e., VHHs fused to nanoparticles, constructed for the development of rapid diagnostic kits; fused to oligomeric matrix proteins for viral neutralization; and conjugated with proteins for the treatment of human parasites. Moreover, paratransgenesis technology using VHHs is an interesting approach to control parasite development in vectors. With enormous biotechnological versatility, facility and low cost for heterologous production, and greater ability to recognize different epitopes, VHHs have appeared as an opportunity to overcome challenges related to the prevention, detection, and control of human diseases, especially NTDs.

4.
PLoS One ; 11(3): e0151363, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27028872

RESUMO

Antivenoms, produced using animal hyperimmune plasma, remains the standard therapy for snakebites. Although effective against systemic damages, conventional antivenoms have limited efficacy against local tissue damage. Additionally, the hypersensitivity reactions, often elicited by antivenoms, the high costs for animal maintenance, the difficulty of producing homogeneous lots, and the instability of biological products instigate the search for innovative products for antivenom therapy. In this study, camelid antibody fragments (VHH) with specificity to Bothropstoxin I and II (BthTX-I and BthTX-II), two myotoxic phospholipases from Bothrops jararacussu venom, were selected from an immune VHH phage display library. After biopanning, 28 and 6 clones recognized BthTX-I and BthTX-II by ELISA, respectively. Complementarity determining regions (CDRs) and immunoglobulin frameworks (FRs) of 13 VHH-deduced amino acid sequences were identified, as well as the camelid hallmark amino acid substitutions in FR2. Three VHH clones (KF498607, KF498608, and KC329718) were capable of recognizing BthTX-I by Western blot and showed affinity constants in the nanomolar range against both toxins. VHHs inhibited the BthTX-II phospholipase A2 activity, and when tested for cross-reactivity, presented specificity to the Bothrops genus in ELISA. Furthermore, two clones (KC329718 and KF498607) neutralized the myotoxic effects induced by B. jararacussu venom, BthTX-I, BthTX-II, and by a myotoxin from Bothrops brazili venom (MTX-I) in mice. Molecular docking revealed that VHH CDRs are expected to bind the C-terminal of both toxins, essential for myotoxic activity, and to epitopes in the BthTX-II enzymatic cleft. Identified VHHs could be a biotechnological tool to improve the treatment for snake envenomation, an important and neglected world public health problem.


Assuntos
Antivenenos , Bothrops , Venenos de Crotalídeos , Fosfolipases A2 do Grupo II , Simulação de Acoplamento Molecular , Anticorpos de Cadeia Única , Animais , Antivenenos/química , Antivenenos/genética , Antivenenos/imunologia , Camelídeos Americanos/genética , Camelídeos Americanos/imunologia , Venenos de Crotalídeos/química , Venenos de Crotalídeos/imunologia , Venenos de Crotalídeos/toxicidade , Fosfolipases A2 do Grupo II/química , Fosfolipases A2 do Grupo II/imunologia , Fosfolipases A2 do Grupo II/toxicidade , Masculino , Camundongos , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA