Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Res ; 246: 118162, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38218517

RESUMO

This study investigated the application of adsorption with activated carbons (ACs) and photodegradation to reduce the concentration of triclosan (TCS) in aqueous solutions. Concerning adsorption, ACs (Darco, Norit, and F400) were characterised and batch experiments were performed to elucidate the effect of pH on equilibrium. The results showed that at pH = 7, the maximum adsorption capacity of TCS onto the ACs was 18.5 mg g-1 for Darco, 16.0 mg g-1 for Norit, and 15.5 mg g-1 for F400. The diffusional kinetic model allowed an adequate interpretation of the experimental data. The effective diffusivity varied and increased with the amount of TCS adsorbed, from 1.06 to 1.68 × 10-8 cm2 s-1. In the case of photodegradation, it was possible to ensure that the triclosan molecule was sensitive to UV light of 254 nm because the removal was over 80 % using UV light. The removal of TCS increased in the presence of sulfate radicals. It was possible to identify 2,4-dichlorophenol as one of the photolytic degradation products of triclosan, which does not represent an environmental hazard at low concentrations of triclosan in water. These results confirm that the use of AC Darco, Norit, and F400 and that photodegradation processes with UV light and persulfate radicals are effective in removing TCS from water, reaching concentration levels that do not constitute a risk to human health or environmental hazard. Both methods effectively eliminate pollutants with relatively easy techniques to implement.


Assuntos
Triclosan , Poluentes Químicos da Água , Humanos , Triclosan/química , Carvão Vegetal/química , Adsorção , Fotólise , Água , Poluentes Químicos da Água/análise
2.
Chem Eng J ; 412: 128682, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33776550

RESUMO

Recently, the potential dangers of viral infection transmission through water and air have become the focus of worldwide attention, via the spread of COVID-19 pandemic. The occurrence of large-scale outbreaks of dangerous infections caused by unknown pathogens and the isolation of new pandemic strains require the development of improved methods of viruses' inactivation. Viruses are not stable self-sustaining living organisms and are rapidly inactivated on isolated surfaces. However, water resources and air can participate in the pathogens' diffusion, stabilization, and transmission. Viruses inactivation and elimination by adsorption are relevant since they can represent an effective and low-cost method to treat fluids, and hence limit the spread of pathogen agents. This review analyzed the interaction between viruses and carbon-based, oxide-based, porous materials and biological materials (e.g., sulfated polysaccharides and cyclodextrins). It will be shown that these adsorbents can play a relevant role in the viruses removal where water and air purification mostly occurring via electrostatic interactions. However, a clear systematic vision of the correlation between the surface potential and the adsorption capacity of the different filters is still lacking and should be provided to achieve a better comprehension of the global phenomenon. The rationalization of the adsorption capacity may be achieved through a proper physico-chemical characterization of new adsorbents, including molecular modeling and simulations, also considering the adsorption of virus-like particles on their surface. As a most timely perspective, the results on this review present potential solutions to investigate coronaviruses and specifically SARS-CoV-2, responsible of the COVID-19 pandemic, whose spread can be limited by the efficient disinfection and purification of closed-spaces air and urban waters.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...