Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Food Chem Toxicol ; : 114850, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986831

RESUMO

Food emulsifiers like glycerol monostearate (G) and Tween 80 (TW) are commonly used to help formation and maintain stability of emulsions. However, certain food contaminants and emulsifiers often co-occur in the same food item due to food culture and cooking methods. For this reason, the present study investigated interaction of toxic effect of emulsifiers (G and TW) and process contaminants (acrylamide (AA) and benzo[a]pyrene (BAP)) on zebrafish. Adult zebrafish were exposed to emulsifiers, food contaminants, or the combination through diet for 2 hours and 7 days. Oxidative stress and inflammation caused by food contaminants were increased when food emulsifiers were present. These combined treatments also induced more severe morphological changes than the contaminant alone treatments. In the gut, disruption of villi structure and increased number of goblet cells was observed and in the liver there were increased lipid deposition, infiltration of immune cells, glycogen depletion and focal necrosis. Increased accumulation of AA and BAP in the liver and gut were detected after addition of emulsifiers, suggesting that emulsifiers can enhance absorption of diet-borne contaminants. Our results showed food emulsifiers and contaminants can interact synergistically and increase risk.

2.
Food Chem Toxicol ; 185: 114499, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38309685

RESUMO

Food products simultaneously containing both food contaminants and emulsifiers are common in baked products, coffee and chocolate. Little is known regarding how food contaminants and emulsifiers interact and alter toxicity. Recent studies have shown that while emulsifiers themselves have little toxicity, they could cause changes in the gut microenvironment and lead to issues such as increased uptake of allergens. This study examined toxic effect of two common process contaminants acrylamide (AA) and benzo [a]pyrene (BAP) combined with food emulsifiers polyoxyethylene sorbitan monooleate (TW) or glycerol monostearate (G). In liver cell line HepG2 and gastrointestinal cell lines HIEC6 and Caco-2, toxicities of AA and BAP were increased by TW but not by G as indicated by decrease in IC50 values. Addition of TW also exacerbated gene expression changes caused by AA or BAP. Cellular uptake and cell membrane permeability were enhanced by TW but not by G, but tight junction proteins of Caco-2 monolayer was impacted by both emulsifiers. These results suggested that TW could increase toxicity of AA and BAP through increasing cell permeability thus chemical uptake and potentially through other interactions. The study is to draw the attention of regulators on the potential synergistic interaction of co-occurring chemicals in food.


Assuntos
Chocolate , Alimentos , Humanos , Células CACO-2 , Café , Transporte Biológico , Acrilamida/toxicidade , Benzo(a)pireno
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...