Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Biol Regul ; 83: 100858, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34920982

RESUMO

Bisphosphate nucleotidase 2 (BPNT2) is a member of a family of phosphatases that are directly inhibited by lithium, the first-line medication for bipolar disorder. BPNT2 is localized to the Golgi, where it metabolizes the by-products of glycosaminoglycan sulfation reactions. BPNT2-knockout mice exhibit impairments in total-body chondroitin-4-sulfation which lead to abnormal skeletal development (chondrodysplasia). These mice die in the perinatal period, which has previously prevented the investigation of BPNT2 in the adult nervous system. Previous work has demonstrated the importance of chondroitin sulfation in the brain, as chondroitin-4-sulfate is a major component of perineuronal nets (PNNs), a specialized neuronal extracellular matrix which mediates synaptic plasticity and regulates certain behaviors. We hypothesized that the loss of BPNT2 in the nervous system would decrease chondroitin-4-sulfation and PNNs in the brain, which would coincide with behavioral abnormalities. We used Cre-lox breeding to knockout Bpnt2 specifically in the nervous system using Bpnt2 floxed (fl/fl) animals and a Nestin-driven Cre recombinase. These mice are viable into adulthood, and do not display gross physical abnormalities. We identified decreases in total glycosaminoglycan sulfation across selected brain regions, and specifically show decreases in chondroitin-4-sulfation which correspond with increases in chondroitin-6-sulfation. Interestingly, these changes were not correlated with gross alterations in PNNs. We also subjected these mice to a selection of neurobehavioral assessments and did not identify significant behavioral abnormalities. In summary, this work demonstrates that BPNT2, a known target of lithium, is important for glycosaminoglycan sulfation in the brain, suggesting that lithium-mediated inhibition of BPNT2 in the nervous system warrants further investigation.


Assuntos
Córtex Cerebral , Sulfatos de Condroitina , Hipocampo , Animais , Córtex Cerebral/metabolismo , Sulfatos de Condroitina/metabolismo , Hipocampo/metabolismo , Compostos de Lítio/farmacologia , Camundongos , Nucleotidases/metabolismo
2.
Gastroenterology ; 162(4): 1226-1241, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34954226

RESUMO

BACKGROUND & AIMS: Sulfoconjugation of small molecules or protein peptides is a key mechanism to ensure biochemical and functional homeostasis in mammals. The PAPS synthase 2 (PAPSS2) is the primary enzyme to synthesize the universal sulfonate donor 3'-phosphoadenosine 5'-phosphosulfate (PAPS). Acetaminophen (APAP) overdose is the leading cause of acute liver failure (ALF), in which oxidative stress is a key pathogenic event, whereas sulfation of APAP contributes to its detoxification. The goal of this study was to determine whether and how PAPSS2 plays a role in APAP-induced ALF. METHODS: Gene expression was analyzed in APAP-induced ALF in patients and mice. Liver-specific Papss2-knockout mice using Alb-Cre (Papss2ΔHC) or AAV8-TBG-Cre (Papss2iΔHC) were created and subjected to APAP-induced ALF. Primary human and mouse hepatocytes were used for in vitro mechanistic analysis. RESULTS: The hepatic expression of PAPSS2 was decreased in APAP-induced ALF in patients and mice. Surprisingly, Papss2ΔHC mice were protected from APAP-induced hepatotoxicity despite having a decreased APAP sulfation, which was accompanied by increased hepatic antioxidative capacity through the activation of the p53-p2-Nrf2 axis. Treatment with a sulfation inhibitor also ameliorated APAP-induced hepatotoxicity. Gene knockdown experiments showed that the hepatoprotective effect of Papss2ΔHC was Nrf2, p53, and p21 dependent. Mechanistically, we identified p53 as a novel substrate of sulfation. Papss2 ablation led to p53 protein accumulation by preventing p53 sulfation, which disrupts p53-MDM2 interaction and p53 ubiquitination and increases p53 protein stability. CONCLUSIONS: We have uncovered a previously unrecognized and p53-mediated role of PAPSS2 in controlling oxidative response. Inhibition of p53 sulfation may be explored for the clinical management of APAP overdose.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Falência Hepática Aguda , Acetaminofen/toxicidade , Animais , Doença Hepática Induzida por Substâncias e Drogas/etiologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Humanos , Fígado/metabolismo , Falência Hepática Aguda/induzido quimicamente , Falência Hepática Aguda/metabolismo , Falência Hepática Aguda/prevenção & controle , Mamíferos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Proteína Supressora de Tumor p53/metabolismo
3.
J Biol Chem ; 297(5): 101293, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34634304

RESUMO

Golgi-resident bisphosphate nucleotidase 2 (BPNT2) is a member of a family of magnesium-dependent, lithium-inhibited phosphatases that share a three-dimensional structural motif that directly coordinates metal binding to effect phosphate hydrolysis. BPNT2 catalyzes the breakdown of 3'-phosphoadenosine-5'-phosphate, a by-product of glycosaminoglycan (GAG) sulfation. KO of BPNT2 in mice leads to skeletal abnormalities because of impaired GAG sulfation, especially chondroitin-4-sulfation, which is critical for proper extracellular matrix development. Mutations in BPNT2 have also been found to underlie a chondrodysplastic disorder in humans. The precise mechanism by which the loss of BPNT2 impairs sulfation remains unclear. Here, we used mouse embryonic fibroblasts (MEFs) to test the hypothesis that the catalytic activity of BPNT2 is required for GAG sulfation in vitro. We show that a catalytic-dead Bpnt2 construct (D108A) does not rescue impairments in intracellular or secreted sulfated GAGs, including decreased chondroitin-4-sulfate, present in Bpnt2-KO MEFs. We also demonstrate that missense mutations in Bpnt2 adjacent to the catalytic site, which are known to cause chondrodysplasia in humans, recapitulate defects in overall GAG sulfation and chondroitin-4-sulfation in MEF cultures. We further show that treatment of MEFs with lithium (a common psychotropic medication) inhibits GAG sulfation and that this effect depends on the presence of BPNT2. Taken together, this work demonstrates that the catalytic activity of an enzyme potently inhibited by lithium can modulate GAG sulfation and therefore extracellular matrix composition, revealing new insights into lithium pharmacology.


Assuntos
Inibidores Enzimáticos/farmacologia , Glicosaminoglicanos/metabolismo , Lítio/farmacologia , Monoéster Fosfórico Hidrolases/antagonistas & inibidores , Monoéster Fosfórico Hidrolases/metabolismo , Animais , Catálise , Linhagem Celular , Glicosaminoglicanos/genética , Camundongos , Camundongos Knockout , Monoéster Fosfórico Hidrolases/genética
4.
Gastroenterology ; 161(1): 271-286.e11, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33819483

RESUMO

BACKGROUND & AIMS: Sulfation is a conjugation reaction essential for numerous biochemical and cellular functions in mammals. The 3'-phosphoadenosine 5'-phosphosulfate (PAPS) synthase 2 (PAPSS2) is the key enzyme to generate PAPS, which is the universal sulfonate donor for all sulfation reactions. The goal of this study was to determine whether and how PAPSS2 plays a role in colitis and colonic carcinogenesis. METHODS: Tissue arrays of human colon cancer specimens, gene expression data, and clinical features of cancer patients were analyzed. Intestinal-specific Papss2 knockout mice (Papss2ΔIE) were created and subjected to dextran sodium sulfate-induced colitis and colonic carcinogenesis induced by a combined treatment of azoxymethane and dextran sodium sulfate or azoxymethane alone. RESULTS: The expression of PAPSS2 is decreased in the colon cancers of mice and humans. The lower expression of PAPSS2 in colon cancer patients is correlated with worse survival. Papss2ΔIE mice showed heightened sensitivity to colitis and colon cancer by damaging the intestinal mucosal barrier, increasing intestinal permeability and bacteria infiltration, and worsening the intestinal tumor microenvironment. Mechanistically, the Papss2ΔIE mice exhibited reduced intestinal sulfomucin content. Metabolomic analyses revealed the accumulation of bile acids, including the Farnesoid X receptor antagonist bile acid tauro-ß-muricholic acid, and deficiency in the formation of bile acid sulfates in the colon of Papss2ΔIE mice. CONCLUSIONS: We have uncovered an important role of PAPSS2-mediated sulfation in colitis and colonic carcinogenesis. Intestinal sulfation may represent a potential diagnostic marker and PAPSS2 may serve as a potential therapeutic target for inflammatory bowel disease and colon cancer.


Assuntos
Neoplasias Associadas a Colite/prevenção & controle , Colite/prevenção & controle , Colo/enzimologia , Mucosa Intestinal/enzimologia , Mucinas/metabolismo , Complexos Multienzimáticos/metabolismo , Sulfato Adenililtransferase/metabolismo , Animais , Ácidos e Sais Biliares/metabolismo , Colite/enzimologia , Colite/genética , Colite/patologia , Neoplasias Associadas a Colite/enzimologia , Neoplasias Associadas a Colite/genética , Neoplasias Associadas a Colite/patologia , Colo/patologia , Bases de Dados Genéticas , Modelos Animais de Doenças , Humanos , Mucosa Intestinal/patologia , Metaboloma , Metabolômica , Camundongos Endogâmicos C57BL , Camundongos Knockout , Complexos Multienzimáticos/genética , Prognóstico , Receptores Citoplasmáticos e Nucleares/metabolismo , Sulfato Adenililtransferase/genética
5.
Adv Biol Regul ; 76: 100694, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32019729

RESUMO

Sulfur assimilation is an essential metabolic pathway that regulates sulfation, amino acid metabolism, nucleotide hydrolysis, and organismal homeostasis. We recently reported that mice lacking bisphosphate 3'-nucleotidase (BPNT1), a key regulator of sulfur assimilation, develop iron-deficiency anemia (IDA) and anasarca. Here we demonstrate two approaches that successfully reduce metabolic toxicity caused by loss of BPNT1: 1) dietary methionine restriction and 2) overproduction of a key transcriptional regulator hypoxia inducible factor 2α (Hif-2a). Reduction of methionine in the diet reverses IDA in mice lacking BPNT1, through a mechanism of downregulation of sulfur assimilation metabolic toxicity. Gaining Hif-2a acts through a different mechanism by restoring iron homeostatic gene expression in BPNT1 deficient mouse intestinal organoids. Finally, as loss of BPNT1 impairs expression of known genetic modifiers of iron-overload, we demonstrate that intestinal-epithelium specific loss of BPNT1 attenuates hepatic iron accumulation in mice with homozygous C282Y mutations in homeostatic iron regulator (HFEC282Y), the most common cause of hemochromatosis in humans. Overall, our study uncovers genetic and dietary strategies to overcome anemia caused by defects in sulfur assimilation and identifies BPNT1 as a potential target for the treatment of hemochromatosis.


Assuntos
Anemia Ferropriva/genética , Proteína da Hemocromatose/genética , Hemocromatose/genética , Ferro/metabolismo , Nucleotidases/genética , Enxofre/metabolismo , Anemia Ferropriva/metabolismo , Anemia Ferropriva/patologia , Anemia Ferropriva/prevenção & controle , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Dieta , Modelos Animais de Doenças , Feminino , Regulação da Expressão Gênica , Hemocromatose/metabolismo , Hemocromatose/patologia , Hemocromatose/prevenção & controle , Proteína da Hemocromatose/metabolismo , Homeostase/genética , Homozigoto , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Fígado/metabolismo , Fígado/patologia , Masculino , Metionina/administração & dosagem , Metionina/deficiência , Camundongos , Camundongos Knockout , Mutação , Nucleotidases/metabolismo , Organoides/metabolismo , Organoides/patologia , Transdução de Sinais
6.
Adv Biol Regul ; 73: 100637, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31378699

RESUMO

Inositide lipid (PIP) and soluble (IP) signaling pathways produce essential cellular codes conserved in eukaryotes. In many cases, deconvoluting metabolic and functional aspects of individual pathways are confounded by promiscuity and multiplicity of PIP and IP kinases and phosphatases. We report a molecular genetic approach that reconstitutes eukaryotic inositide lipid and soluble pathways in a prokaryotic cell which inherently lack inositide kinases and phosphatases in their genome. By expressing synthetic cassettes of eukaryotic genes, we have reconstructed the heterologous formation of a range of inositide lipids, including PI(3)P, PI(4,5)P2 and PIP3. In addition, we report the reconstruction of lipid-dependent production of inositol hexakisphosphate (IP6). Our synthetic system is scalable, reduces confounding metabolic issues, for example it is devoid of inositide phosphatases and orthologous kinases, and enables accurate characterization gene product enzymatic activity and substrate selectivity. This genetically engineered tool is designed to help interpret metabolic pathways and may facilitate in vivo testing of regulators and small molecule inhibitors. In summary, heterologous expression of inositide pathways in bacteria provide a malleable experimental platform for aiding signaling biologists and offers new insights into metabolism of these essential pathways.


Assuntos
Escherichia coli , Fosfatidilinositóis , Transdução de Sinais/genética , Biologia Sintética , Escherichia coli/genética , Escherichia coli/metabolismo , Fosfatidilinositóis/genética , Fosfatidilinositóis/metabolismo
7.
RNA ; 22(8): 1250-60, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27277658

RESUMO

Lysine-specific histone demethylase 1 (LSD1) is an essential epigenetic regulator in metazoans and requires the co-repressor element-1 silencing transcription factor (CoREST) to efficiently catalyze the removal of mono- and dimethyl functional groups from histone 3 at lysine positions 4 and 9 (H3K4/9). LSD1 interacts with over 60 regulatory proteins and also associates with lncRNAs (TERRA, HOTAIR), suggesting a regulatory role for RNA in LSD1 function. We report that a stacked, intramolecular G-quadruplex (GQ) forming TERRA RNA (GG[UUAGGG]8UUA) binds tightly to the functional LSD1-CoREST complex (Kd ≈ 96 nM), in contrast to a single GQ RNA unit ([UUAGGG]4U), a GQ DNA ([TTAGGG]4T), or an unstructured single-stranded RNA. Stabilization of a parallel-stranded GQ RNA structure by monovalent potassium ions (K(+)) is required for high affinity binding to the LSD1-CoREST complex. These data indicate that LSD1 can distinguish between RNA and DNA as well as structured versus unstructured nucleotide motifs. Further, cross-linking mass spectrometry identified the primary location of GQ RNA binding within the SWIRM/amine oxidase domain (AOD) of LSD1. An ssRNA binding region adjacent to this GQ binding site was also identified via X-ray crystallography. This RNA binding interface is consistent with kinetic assays, demonstrating that a GQ-forming RNA can serve as a noncompetitive inhibitor of LSD1-catalyzed demethylation. The identification of a GQ RNA binding site coupled with kinetic data suggests that structured RNAs can function as regulatory molecules in LSD1-mediated mechanisms.


Assuntos
Quadruplex G , Histona Desmetilases/metabolismo , Lisina/metabolismo , RNA/metabolismo
8.
Med Hypotheses ; 88: 63-7, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26880641

RESUMO

Formaldehyde is extremely toxic reacting with proteins to crosslinks peptide chains. Formaldehyde is a metabolic product in many enzymatic reactions and the question of how these enzymes are protected from the formaldehyde that is generated has largely remained unanswered. Early experiments from our laboratory showed that two liver mitochondrial enzymes, dimethylglycine dehydrogenase (DMGDH) and sarcosine dehydrogenase (SDH) catalyze oxidative demethylation reactions (sarcosine is a common name for monomethylglycine). The enzymatic products of these enzymes were the demethylated substrates and formaldehyde, produced from the removed methyl group. Both DMGDH and SDH contain FAD and both have tightly bound tetrahydrofolate (THF), a folate coenzyme. THF binds reversibly with formaldehyde to form 5,10-methylene-THF. At that time we showed that purified DMGDH, with tightly bound THF, reacted with formaldehyde generated during the reaction to form 5,10-methylene-THF. This effectively scavenged the formaldehyde to protect the enzyme. Recently, post-translational modifications on histone tails have been shown to be responsible for epigenetic regulation of gene expression. One of these modifications is methylation of lysine residues. The first enzyme discovered to accomplish demethylation of these modified histones was histone lysine demethylase (LSD1). LSD1 specifically removes methyl groups from di- and mono-methylated lysines at position 4 of histone 3. This enzyme contained tightly bound FAD and the products of the reaction were the demethylated lysine residue and formaldehyde. The mechanism of LSD1 demethylation is analogous to the mechanism previously postulated for DMGDH, i.e. oxidation of the N-methyl bond to the methylene imine followed by hydrolysis to generate formaldehyde. This suggested that THF might also be involved in the LSD1 reaction to scavenge the formaldehyde produced. Our hypotheses are that THF is bound to native LSD1 by analogy to DMGDH and SDH and that the bound THF serves to protect the FAD class of histone demethylases from the destructive effects of formaldehyde generation by formation of 5,10-methylene-THF. We present pilot data showing that decreased folate in livers as a result of dietary folate deficiency is associated with increased levels of methylated lysine 4 of histone 3. This can be a result of decreased LSD1 activity resulting from the decreased folate available to scavenge the formaldehyde produced at the active site caused by the folate deficiency. Because LSD1 can regulate gene expression this suggests that folate may play a more important role than simply serving as a carrier of one-carbon units and be a factor in other diseases associated with low folate.


Assuntos
Metilação de DNA , Deficiência de Ácido Fólico/imunologia , Histona Desmetilases/química , Histonas/química , Domínio Catalítico , Epigênese Genética , Escherichia coli/metabolismo , Ácido Fólico/química , Humanos , Lisina/química , Espectrometria de Massas , Modelos Teóricos , Projetos Piloto , Processamento de Proteína Pós-Traducional , Sarcosina Desidrogenase/química , Tetra-Hidrofolatos/química
9.
J Hepatol ; 64(2): 409-418, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26394163

RESUMO

BACKGROUND & AIMS: Glycine N-methyltransferase (GNMT) expression is decreased in some patients with severe non-alcoholic fatty liver disease. Gnmt deficiency in mice (Gnmt-KO) results in abnormally elevated serum levels of methionine and its metabolite S-adenosylmethionine (SAMe), and this leads to rapid liver steatosis development. Autophagy plays a critical role in lipid catabolism (lipophagy), and defects in autophagy have been related to liver steatosis development. Since methionine and its metabolite SAMe are well known inactivators of autophagy, we aimed to examine whether high levels of both metabolites could block autophagy-mediated lipid catabolism. METHODS: We examined methionine levels in a cohort of 358 serum samples from steatotic patients. We used hepatocytes cultured with methionine and SAMe, and hepatocytes and livers from Gnmt-KO mice. RESULTS: We detected a significant increase in serum methionine levels in steatotic patients. We observed that autophagy and lipophagy were impaired in hepatocytes cultured with high methionine and SAMe, and that Gnmt-KO livers were characterized by an impairment in autophagy functionality, likely caused by defects at the lysosomal level. Elevated levels of methionine and SAMe activated PP2A by methylation, while blocking PP2A activity restored autophagy flux in Gnmt-KO hepatocytes, and in hepatocytes treated with SAMe and methionine. Finally, normalization of methionine and SAMe levels in Gnmt-KO mice using a methionine deficient diet normalized the methylation capacity, PP2A methylation, autophagy, and ameliorated liver steatosis. CONCLUSIONS: These data suggest that elevated levels of methionine and SAMe can inhibit autophagic catabolism of lipids contributing to liver steatosis.


Assuntos
Autofagia/fisiologia , Fígado Gorduroso/metabolismo , Hepatócitos/metabolismo , Metionina/sangue , Proteína Fosfatase 2/metabolismo , S-Adenosilmetionina/sangue , Animais , Técnicas de Cultura de Células , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Humanos , Metilação , Camundongos
10.
J Hepatol ; 62(3): 673-81, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25457203

RESUMO

BACKGROUND & AIMS: Very-low-density lipoproteins (VLDLs) export lipids from the liver to peripheral tissues and are the precursors of low-density-lipoproteins. Low levels of hepatic S-adenosylmethionine (SAMe) decrease triglyceride (TG) secretion in VLDLs, contributing to hepatosteatosis in methionine adenosyltransferase 1A knockout mice but nothing is known about the effect of SAMe on the circulating VLDL metabolism. We wanted to investigate whether excess SAMe could disrupt VLDL plasma metabolism and unravel the mechanisms involved. METHODS: Glycine N-methyltransferase (GNMT) knockout (KO) mice, GNMT and perilipin-2 (PLIN2) double KO (GNMT-PLIN2-KO) and their respective wild type (WT) controls were used. A high fat diet (HFD) or a methionine deficient diet (MDD) was administrated to exacerbate or recover VLDL metabolism, respectively. Finally, 33 patients with non-alcoholic fatty-liver disease (NAFLD); 11 with hypertriglyceridemia and 22 with normal lipidemia were used in this study. RESULTS: We found that excess SAMe increases the turnover of hepatic TG stores for secretion in VLDL in GNMT-KO mice, a model of NAFLD with high SAMe levels. The disrupted VLDL assembly resulted in the secretion of enlarged, phosphatidylethanolamine-poor, TG- and apoE-enriched VLDL-particles; special features that lead to increased VLDL clearance and decreased serum TG levels. Re-establishing normal SAMe levels restored VLDL secretion, features and metabolism. In NAFLD patients, serum TG levels were lower when hepatic GNMT-protein expression was decreased. CONCLUSIONS: Excess hepatic SAMe levels disrupt VLDL assembly and features and increase circulating VLDL clearance, which will cause increased VLDL-lipid supply to tissues and might contribute to the extrahepatic complications of NAFLD.


Assuntos
Lipoproteínas VLDL/sangue , Hepatopatia Gordurosa não Alcoólica/metabolismo , S-Adenosilmetionina/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Feminino , Glicina N-Metiltransferase/deficiência , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/metabolismo , Humanos , Lipoproteínas VLDL/metabolismo , Fígado/metabolismo , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Modelos Biológicos , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Perilipina-2 , S-Adenosilmetionina/deficiência , Triglicerídeos/metabolismo , Adulto Jovem
11.
Lab Invest ; 95(2): 223-36, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25531568

RESUMO

Glycine-N-methyltransferase (GNMT) is essential to preserve liver homeostasis. Cirrhotic patients show low expression of GNMT that is absent in hepatocellular carcinoma (HCC) samples. Accordingly, GNMT deficiency in mice leads to steatohepatitis, fibrosis, cirrhosis, and HCC. Lack of GNMT triggers NK cell activation in GNMT(-/-) mice and depletion of TRAIL significantly attenuates acute liver injury and inflammation in these animals. Chronic inflammation leads to fibrogenesis, further contributing to the progression of chronic liver injury regardless of the etiology. The aim of our study is to elucidate the implication of TRAIL-producing NK cells in the progression of chronic liver injury and fibrogenesis. For this we generated double TRAIL(-/-)/GNMT(-/-) mice in which we found that TRAIL deficiency efficiently protected the liver against chronic liver injury and fibrogenesis in the context of GNMT deficiency. Next, to better delineate the implication of TRAIL-producing NK cells during fibrogenesis we performed bile duct ligation (BDL) to GNMT(-/-) and TRAIL(-/-)/GNMT(-/-) mice. In GNMT(-/-) mice, exacerbated fibrogenic response after BDL concurred with NK1.1(+) cell activation. Importantly, specific inhibition of TRAIL-producing NK cells efficiently protected GNMT(-/-) mice from BDL-induced liver injury and fibrogenesis. Finally, TRAIL(-/-)/GNMT(-/-) mice showed significantly less fibrosis after BDL than GNMT(-/-) mice further underlining the relevance of the TRAIL/DR5 axis in mediating liver injury and fibrogenesis in GNMT(-/-) mice. Finally, in vivo silencing of DR5 efficiently protected GNMT(-/-) mice from BDL-liver injury and fibrogenesis, overall underscoring the key role of the TRAIL/DR5 axis in promoting fibrogenesis in the context of absence of GNMT. Overall, our work demonstrates that TRAIL-producing NK cells actively contribute to liver injury and further fibrogenesis in the pathological context of GNMT deficiency, a molecular scenario characteristic of chronic human liver disease.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/imunologia , Doença Hepática Terminal/etiologia , Doença Hepática Terminal/patologia , Glicina N-Metiltransferase/deficiência , Células Matadoras Naturais/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Animais , Ductos Biliares/cirurgia , Western Blotting , Citometria de Fluxo , Glicina N-Metiltransferase/imunologia , Humanos , Imuno-Histoquímica , Ligadura , Camundongos , Camundongos Knockout , Receptores do Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
12.
Biochem Biophys Res Commun ; 449(4): 392-8, 2014 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-24858690

RESUMO

Dimethylglycine dehydrogenase (DMGDH) is a mammalian mitochondrial enzyme which plays an important role in the utilization of methyl groups derived from choline. DMGDH is a flavin containing enzyme which catalyzes the oxidative demethylation of dimethylglycine in vitro with the formation of sarcosine (N-methylglycine), hydrogen peroxide and formaldehyde. DMGDH binds tetrahydrofolate (THF) in vivo, which serves as an acceptor of formaldehyde and in the cell the product of the reaction is 5,10-methylenetetrahydrofolate instead of formaldehyde. To gain insight into the mechanism of the reaction we solved the crystal structures of the recombinant mature and precursor forms of rat DMGDH and DMGDH-THF complexes. Both forms of DMGDH reveal similar kinetic parameters and have the same tertiary structure fold with two domains formed by N- and C-terminal halves of the protein. The active center is located in the N-terminal domain while the THF binding site is located in the C-terminal domain about 40Å from the isoalloxazine ring of FAD. The folate binding site is connected with the enzyme active center via an intramolecular channel. This suggests the possible transfer of the intermediate imine of dimethylglycine from the active center to the bound THF where they could react producing a 5,10-methylenetetrahydrofolate. Based on the homology of the rat and human DMGDH the structural basis for the mechanism of inactivation of the human DMGDH by naturally occurring His109Arg mutation is proposed.


Assuntos
Dimetilglicina Desidrogenase/química , Proteínas Mitocondriais/química , Tetra-Hidrofolatos/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Domínio Catalítico , Cristalização , Cristalografia por Raios X , Dimetilglicina Desidrogenase/metabolismo , Humanos , Cinética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ratos , Sarcosina/análogos & derivados , Tetra-Hidrofolatos/metabolismo
13.
Protein Sci ; 23(7): 993-8, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24715612

RESUMO

An important epigenetic modification is the methylation/demethylation of histone lysine residues. The first histone demethylase to be discovered was a lysine-specific demethylase 1, LSD1, a flavin containing enzyme which carries out the demethylation of di- and monomethyllysine 4 in histone H3. The removed methyl groups are oxidized to formaldehyde. This reaction is similar to those performed by dimethylglycine dehydrogenase and sarcosine dehydrogenase, in which protein-bound tetrahydrofolate (THF) was proposed to serve as an acceptor of the generated formaldehyde. We showed earlier that LSD1 binds THF with high affinity which suggests its possible participation in the histone demethylation reaction. In the cell, LSD1 interacts with co-repressor for repressor element 1 silencing transcription factor (CoREST). In order to elucidate the role of folate in the demethylating reaction we solved the crystal structure of the LSD1-CoREST-THF complex. In the complex, the folate-binding site is located in the active center in close proximity to flavin adenine dinucleotide. This position of the folate suggests that the bound THF accepts the formaldehyde generated in the course of histone demethylation to form 5,10-methylene-THF. We also show the formation of 5,10-methylene-THF during the course of the enzymatic reaction in the presence of THF by mass spectrometry. Production of this form of folate could act to prevent accumulation of potentially toxic formaldehyde in the cell. These studies suggest that folate may play a role in the epigenetic control of gene expression in addition to its traditional role in the transfer of one-carbon units in metabolism.


Assuntos
Proteínas Correpressoras/química , Histona Desmetilases/química , Lisina/metabolismo , Tetra-Hidrofolatos/química , Sítios de Ligação , Proteínas Correpressoras/metabolismo , Cristalografia por Raios X , Flavina-Adenina Dinucleotídeo/química , Histona Desmetilases/metabolismo , Humanos , Espectrometria de Massas , Modelos Moleculares , Conformação Proteica , Especificidade por Substrato , Tetra-Hidrofolatos/metabolismo
14.
Hippocampus ; 24(7): 840-52, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24687756

RESUMO

The hippocampus is a brain area characterized by its high plasticity, observed at all levels of organization: molecular, synaptic, and cellular, the latter referring to the capacity of neural precursors within the hippocampus to give rise to new neurons throughout life. Recent findings suggest that promoter methylation is a plastic process subjected to regulation, and this plasticity seems to be particularly important for hippocampal neurogenesis. We have detected the enzyme GNMT (a liver metabolic enzyme) in the hippocampus. GNMT regulates intracellular levels of SAMe, which is a universal methyl donor implied in almost all methylation reactions and, thus, of prime importance for DNA methylation. In addition, we show that deficiency of this enzyme in mice (Gnmt-/-) results in high SAMe levels within the hippocampus, reduced neurogenic capacity, and spatial learning and memory impairment. In vitro, SAMe inhibited neural precursor cell division in a concentration-dependent manner, but only when proliferation signals were triggered by bFGF. Indeed, SAMe inhibited the bFGF-stimulated MAP kinase signaling cascade, resulting in decreased cyclin E expression. These results suggest that alterations in the concentration of SAMe impair neurogenesis and contribute to cognitive decline.


Assuntos
Erros Inatos do Metabolismo dos Aminoácidos/psicologia , Cognição/fisiologia , Glicina N-Metiltransferase/deficiência , Hipocampo/enzimologia , Proteínas do Tecido Nervoso/fisiologia , Neurogênese/fisiologia , S-Adenosilmetionina/fisiologia , Animais , Ciclina E/biossíntese , Ciclina E/genética , Fator 2 de Crescimento de Fibroblastos/antagonistas & inibidores , Fator 2 de Crescimento de Fibroblastos/farmacologia , Regulação da Expressão Gênica , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/fisiologia , Hipocampo/fisiopatologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Aprendizagem em Labirinto/fisiologia , Transtornos da Memória/enzimologia , Transtornos da Memória/etiologia , Metionina/metabolismo , Metionina Adenosiltransferase/deficiência , Metionina Adenosiltransferase/genética , Metilação , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas do Tecido Nervoso/deficiência , Proteínas do Tecido Nervoso/genética , Plasticidade Neuronal , Teste de Desempenho do Rota-Rod , S-Adenosilmetionina/biossíntese
15.
Neuron ; 81(5): 1024-1039, 2014 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-24607226

RESUMO

Axonal myelination is essential for rapid saltatory impulse conduction in the nervous system, and malformation or destruction of myelin sheaths leads to motor and sensory disabilities. DNA methylation is an essential epigenetic modification during mammalian development, yet its role in myelination remains obscure. Here, using high-resolution methylome maps, we show that DNA methylation could play a key gene regulatory role in peripheral nerve myelination and that S-adenosylmethionine (SAMe), the principal methyl donor in cytosine methylation, regulates the methylome dynamics during this process. Our studies also point to a possible role of SAMe in establishing the aberrant DNA methylation patterns in a mouse model of diabetic neuropathy, implicating SAMe in the pathogenesis of this disease. These critical observations establish a link between SAMe and DNA methylation status in a defined biological system, providing a mechanism that could direct methylation changes during cellular differentiation and in diverse pathological situations.


Assuntos
Metilação de DNA/genética , Bainha de Mielina/metabolismo , Nervos Periféricos/metabolismo , S-Adenosilmetionina/metabolismo , Células de Schwann/metabolismo , Animais , Diferenciação Celular/fisiologia , Divisão Celular/fisiologia , Feminino , Genômica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Obesos , Bainha de Mielina/fisiologia , Nervos Periféricos/citologia , Cultura Primária de Células , Ratos , Células de Schwann/citologia
16.
Hepatology ; 58(4): 1296-305, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23505042

RESUMO

UNLABELLED: Methionine adenosyltransferase 1A (MAT1A) and glycine N-methyltransferase (GNMT) are the primary genes involved in hepatic S-adenosylmethionine (SAMe) synthesis and degradation, respectively. Mat1a ablation in mice induces a decrease in hepatic SAMe, activation of lipogenesis, inhibition of triglyceride (TG) release, and steatosis. Gnmt-deficient mice, despite showing a large increase in hepatic SAMe, also develop steatosis. We hypothesized that as an adaptive response to hepatic SAMe accumulation, phosphatidylcholine (PC) synthesis by way of the phosphatidylethanolamine (PE) N-methyltransferase (PEMT) pathway is stimulated in Gnmt(-/-) mice. We also propose that the excess PC thus generated is catabolized, leading to TG synthesis and steatosis by way of diglyceride (DG) generation. We observed that Gnmt(-/-) mice present with normal hepatic lipogenesis and increased TG release. We also observed that the flux from PE to PC is stimulated in the liver of Gnmt(-/-) mice and that this results in a reduction in PE content and a marked increase in DG and TG. Conversely, reduction of hepatic SAMe following the administration of a methionine-deficient diet reverted the flux from PE to PC of Gnmt(-/-) mice to that of wildtype animals and normalized DG and TG content preventing the development of steatosis. Gnmt(-/-) mice with an additional deletion of perilipin2, the predominant lipid droplet protein, maintain high SAMe levels, with a concurrent increased flux from PE to PC, but do not develop liver steatosis. CONCLUSION: These findings indicate that excess SAMe reroutes PE towards PC and TG synthesis and lipid sequestration.


Assuntos
Fígado/metabolismo , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/metabolismo , S-Adenosilmetionina/metabolismo , Triglicerídeos/metabolismo , Animais , Modelos Animais de Doenças , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Feminino , Glicina N-Metiltransferase/deficiência , Glicina N-Metiltransferase/genética , Homeostase/fisiologia , Metabolismo dos Lipídeos/fisiologia , Masculino , Proteínas de Membrana/deficiência , Proteínas de Membrana/genética , Camundongos , Camundongos Knockout , Perilipina-2
17.
Gastroenterology ; 143(3): 787-798.e13, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22687285

RESUMO

BACKGROUND & AIMS: Patients with cirrhosis are at high risk for developing hepatocellular carcinoma (HCC), and their liver tissues have abnormal levels of S-adenosylmethionine (SAMe). Glycine N-methyltransferase (GNMT) catabolizes SAMe, but its expression is down-regulated in HCC cells. Mice that lack GNMT develop fibrosis and hepatomas and have alterations in signaling pathways involved in carcinogenesis. We investigated the role of GNMT in human HCC cell lines and in liver carcinogenesis in mice. METHODS: We studied hepatoma cells from GNMT knockout mice and analyzed the roles of liver kinase B1 (LKB1, STK11) signaling via 5'-adenosine monophosphate-activated protein kinase (AMPK) and Ras in regulating proliferation and transformation. RESULTS: Hepatoma cells from GNMT mice had defects in LKB1 signaling to AMPK, making them resistant to induction of apoptosis by adenosine 3',5'-cyclic monophosphate activation of protein kinase A and calcium/calmodulin-dependent protein kinase kinase 2. Ras-mediated hyperactivation of LKB1 promoted proliferation of GNMT-deficient hepatoma cells and required mitogen-activated protein kinase 2 (ERK) and ribosomal protein S6 kinase polypeptide 2 (p90RSK). Ras activation of LKB1 required expression of RAS guanyl releasing protein 3 (RASGRP3). Reduced levels of GNMT and phosphorylation of AMPKα at Thr172 and increased levels of Ras, LKB1, and RASGRP3 in HCC samples from patients were associated with shorter survival times. CONCLUSIONS: Reduced expression of GNMT in mouse hepatoma cells and human HCC cells appears to increase activity of LKB1 and RAS; activation of RAS signaling to LKB1 and RASGRP3, via ERK and p90RSK, might be involved in liver carcinogenesis and be used as a prognostic marker. Reagents that disrupt this pathway might be developed to treat patients with HCC.


Assuntos
Carcinoma Hepatocelular/enzimologia , Glicina N-Metiltransferase/deficiência , Neoplasias Hepáticas/enzimologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose , Azacitidina/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Metilação de DNA , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Glicina N-Metiltransferase/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Proteína Quinase 1 Ativada por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Interferência de RNA , Proteínas Quinases S6 Ribossômicas 90-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fatores de Tempo , Transfecção , Carga Tumoral , Fatores ras de Troca de Nucleotídeo Guanina
18.
Hepatology ; 56(2): 747-59, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22392635

RESUMO

UNLABELLED: Glycine N-methyltransferase (GNMT) catabolizes S-adenosylmethionine (SAMe), the main methyl donor of the body. Patients with cirrhosis show attenuated GNMT expression, which is absent in hepatocellular carcinoma (HCC) samples. GNMT(-/-) mice develop spontaneous steatosis that progresses to steatohepatitis, cirrhosis, and HCC. The liver is highly enriched with innate immune cells and plays a key role in the body's host defense and in the regulation of inflammation. Chronic inflammation is the major hallmark of nonalcoholic steatohepatitis (NASH) progression. The aim of our study was to uncover the molecular mechanisms leading to liver chronic inflammation in the absence of GNMT, focusing on the implication of natural killer (NK) / natural killer T (NKT) cells. We found increased expression of T helper (Th)1- over Th2-related cytokines, tumor necrosis factor (TNF)-related apoptosis-inducing ligand (TRAIL)-R2/DR5, and several ligands of NK cells in GNMT(-/-) livers. Interestingly, NK cells from GNMT(-/-) mice were spontaneously activated, expressed more TRAIL, and had strong cytotoxic activity, suggesting their contribution to the proinflammatory environment in the liver. Accordingly, NK cells mediated hypersensitivity to concanavalin A (ConA)-mediated hepatitis in GNMT(-/-) mice. Moreover, GNMT(-/-) mice were hypersensitive to endotoxin-mediated liver injury. NK cell depletion and adoptive transfer of TRAIL(-/-) liver-NK cells protected the liver against lipopolysaccharide (LPS) liver damage. CONCLUSION: Our data allow us to conclude that TRAIL-producing NK cells actively contribute to promote a proinflammatory environment at early stages of fatty liver disease, suggesting that this cell compartment may contribute to the progression of NASH.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Fígado Gorduroso/imunologia , Fígado Gorduroso/metabolismo , Glicina N-Metiltransferase/metabolismo , Células Matadoras Naturais/imunologia , Doença Aguda , Transferência Adotiva , Animais , Apoptose/efeitos dos fármacos , Apoptose/imunologia , Doença Hepática Induzida por Substâncias e Drogas/patologia , Concanavalina A/toxicidade , Modelos Animais de Doenças , Fígado Gorduroso/patologia , Glicina N-Metiltransferase/genética , Glicina N-Metiltransferase/imunologia , Células Matadoras Naturais/patologia , Lipopolissacarídeos/toxicidade , Depleção Linfocítica , Masculino , Camundongos , Camundongos Knockout , Mitógenos/toxicidade , Ligante Indutor de Apoptose Relacionado a TNF/genética , Ligante Indutor de Apoptose Relacionado a TNF/imunologia , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo
19.
Biochim Biophys Acta ; 1824(2): 286-91, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22037183

RESUMO

Glycine N-methyltransferase (GNMT) is a key regulatory enzyme in methyl group metabolism. In mammalian liver it reduces S-adenosylmethionine levels by using it to methylate glycine, producing N-methylglycine (sarcosine) and S-adenosylhomocysteine. GNMT is inhibited by binding two molecules of 5-methyltetrahydrofolate (mono- or polyglutamate forms) per tetramer of the active enzyme. Inhibition is sensitive to the status of the N-terminal valine of GNMT and to polyglutamation of the folate inhibitor. It is inhibited by pentaglutamate form more efficiently compared to monoglutamate form. The native rat liver GNMT contains an acetylated N-terminal valine and is inhibited much more efficiently compared to the recombinant protein expressed in E. coli where the N-terminus is not acetylated. In this work we used a protein crystallography approach to evaluate the structural basis for these differences. We show that in the folate-GNMT complexes with the native enzyme, two folate molecules establish three and four hydrogen bonds with the protein. In the folate-recombinant GNMT complex only one hydrogen bond is established. This difference results in more effective inhibition by folate of the native liver GNMT activity compared to the recombinant enzyme.


Assuntos
Glicina N-Metiltransferase/metabolismo , Fígado/enzimologia , Modelos Moleculares , Proteínas Recombinantes/metabolismo , Animais , Domínio Catalítico , Cristalografia por Raios X , Inibidores Enzimáticos/química , Inibidores Enzimáticos/metabolismo , Glicina N-Metiltransferase/antagonistas & inibidores , Glicina N-Metiltransferase/química , Glicina N-Metiltransferase/isolamento & purificação , Ligação de Hidrogênio , Ligação Proteica , Ratos , Proteínas Recombinantes/química , Tetra-Hidrofolatos/química , Tetra-Hidrofolatos/metabolismo , Valina/metabolismo
20.
Mol Genet Metab ; 105(2): 228-36, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22137549

RESUMO

This paper reports studies of two patients proven by a variety of studies to have mitochondrial depletion syndromes due to mutations in either their MPV17 or DGUOK genes. Each was initially investigated metabolically because of plasma methionine concentrations as high as 15-21-fold above the upper limit of the reference range, then found also to have plasma levels of S-adenosylmethionine (AdoMet) 4.4-8.6-fold above the upper limit of the reference range. Assays of S-adenosylhomocysteine, total homocysteine, cystathionine, sarcosine, and other relevant metabolites and studies of their gene encoding glycine N-methyltransferase produced evidence suggesting they had none of the known causes of elevated methionine with or without elevated AdoMet. Patient 1 grew slowly and intermittently, but was cognitively normal. At age 7 years he was found to have hepatocellular carcinoma, underwent a liver transplant and died of progressive liver and renal failure at age almost 9 years. Patient 2 had a clinical course typical of DGUOK deficiency and died at age 8 ½ months. Although each patient had liver abnormalities, evidence is presented that such abnormalities are very unlikely to explain their elevations of AdoMet or the extent of their hypermethioninemias. A working hypothesis is presented suggesting that with mitochondrial depletion the normal usage of AdoMet by mitochondria is impaired, AdoMet accumulates in the cytoplasm of affected cells poor in glycine N-methyltransferase activity, the accumulated AdoMet causes methionine to accumulate by inhibiting activity of methionine adenosyltransferase II, and that both AdoMet and methionine consequently leak abnormally into the plasma.


Assuntos
DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Glicina N-Metiltransferase/metabolismo , Fígado/metabolismo , Fígado/patologia , Proteínas de Membrana/metabolismo , Metionina/metabolismo , Proteínas Mitocondriais/metabolismo , S-Adenosilmetionina/metabolismo , Adolescente , Sequência de Bases , Éxons , Feminino , Glicina N-Metiltransferase/genética , Humanos , Lactente , Masculino , Proteínas de Membrana/genética , Metionina/sangue , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Doenças Mitocondriais/patologia , Proteínas Mitocondriais/genética , Dados de Sequência Molecular , Mutação , S-Adenosilmetionina/sangue , Deleção de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...