Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 8: 14672, 2017 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-28276442

RESUMO

Molecular electronics is considered a promising approach for future nanoelectronic devices. In order that molecular junctions can be used as electrical switches or even memory devices, they need to be actuated between two distinct conductance states in a controlled and reproducible manner by external stimuli. Here we present a tripodal platform with a cantilever arm and a nitrile group at its end that is lifted from the surface. The formation of a coordinative bond between the nitrile nitrogen and the gold tip of a scanning tunnelling microscope can be controlled by both electrical and mechanical means, and leads to a hysteretic switching of the conductance of the junction by more than two orders of magnitude. This toggle switch can be actuated with high reproducibility so that the forces involved in the mechanical deformation of the molecular cantilever can be determined precisely with scanning tunnelling microscopy.

2.
J Org Chem ; 79(16): 7342-57, 2014 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-25025826

RESUMO

The efficient synthesis of a new tripodal platform based on a rigid 9,9'-spirobifluorene with three acetyl protected thiol groups in the positions 2, 3' and 6' for deposition on Au(111) surfaces is reported. The modular 9,9'-spirobifluorene platform provides both a vertical arrangement of the molecular rod in position 7 and its electronic coupling to the gold substrate. To demonstrate the validity of the molecular design, the model compound 24 exposing a para-cyanophenylethynyl rod is synthesized. Our synthetic approach is based on a metal-halogen exchange reaction of 2-iodobiphenyl derivative and his subsequent reaction with 2,7-disubstituted fluoren-9-one to afford the carbinol 16. Further electrophilic cyclization and separation of regioisomers provided the corresponding 2,7,3',6'-tetrasubstituted 9,9'-spirobifluorene 17 as the key intermediate. The molecular structure of 17 was determined by single-crystal X-ray diffraction crystallography. The self-assembly features of the target compound 24 were analyzed in preliminary UHV-STM experiments. These results already demonstrated the promising potential of the concept of the tripodal structure to stabilize the molecule on a Au(111) surface in order to control the spatial arrangement of the molecular rod.

3.
ACS Nano ; 7(7): 6170-80, 2013 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-23790078

RESUMO

The realization of molecular electronics demands a detailed knowledge of the correlation between chemical groups and electronic function. It has become obvious during the last years that the conformation of a molecule and its coupling to the connecting electrodes plays a crucial role in its conductance behavior and its electronic function, e.g., as a switch. Knowledge about these relationships is therefore essential for future design of molecular electronic building blocks. We present a new three-dimensional molecule, consisting of three identical molecular wires connected to a headgroup. Due to the well-defined spatial arrangement of the molecule in a nonplanar geometry, it is possible to investigate the conductance behavior of these wires with respect to their position and coupling to the surface electrode with the submolecular resolution of a scanning tunneling microscope. The experimental findings are supported by calculations of the electronic structure and conformation of the molecule on the surface by density functional theory with dispersion corrections.


Assuntos
Ouro/química , Nanopartículas Metálicas/química , Modelos Químicos , Modelos Moleculares , Simulação por Computador , Condutividade Elétrica , Transporte de Elétrons
4.
Nat Commun ; 4: 1379, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23340419

RESUMO

Catalytic hydrogenation of graphite has recently attracted renewed attention as a route for nanopatterning of graphene and to produce graphene nanoribbons. These reports show that metallic nanoparticles etch the surface layers of graphite or graphene anisotropically along the crystallographic zig-zag or armchair directions. The etching direction can be influenced by external magnetic fields or the supporting substrate. Here we report the subsurface etching of highly oriented pyrolytic graphite by Ni nanoparticles, to form a network of tunnels, as seen by scanning electron microscopy and scanning tunnelling microscopy. In this new nanoporous form of graphite, the top layers bend inward on top of the tunnels, whereas their local density of states remains fundamentally unchanged. Engineered nanoporous tunnel networks in graphite allow for further chemical modification and may find applications in various fields and in fundamental science research.

5.
Chem Commun (Camb) ; 49(11): 1076-8, 2013 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-23264958

RESUMO

Tripodal facial and meridional Ru(II) complexes comprising three conjugated legs with acetyl-protected thiol end groups are designed, synthesized and isolated for investigation on a gold surface. Preliminary ultrahigh vacuum scanning tunnelling microscopy (UHV STM) measurements of a monolayer of facial isomer deposited on Au(111) are presented.

6.
J Chem Phys ; 130(2): 024705, 2009 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-19154048

RESUMO

From an interplay between scanning tunneling microscopy (STM) and ab initio density functional theory (DFT) we have identified and characterized two different self-assembled adenine (A) structures formed on the Au(111) surface. The STM observations reveal that both structures have a hexagonal geometry in which each molecule forms double hydrogen bonds with three nearest neighbors. One of the A structures, with four molecules in the primitive cell, has p2gg space group symmetry, while the other one, with two molecules in the cell, has p2 symmetry. The first structure is observed more frequently and is found to be the dominating structure after annealing. Experimental as well as theoretical findings indicate that the interaction of A molecules with the gold surface is rather weak and smooth across the surface. This enabled us to unequivocally characterize the observed structures, systematically predict all structural possibilities, based on all known A-A dimers, and provisionally optimize positions of the A molecules in the cell prior to full-scale DFT calculations. The theoretical method is a considerable improvement compared to the approach suggested previously by Kelly and Kantorovich [Surf. Sci. 589, 139 (2005)]. We propose that the less ordered p2gg symmetry structure is observed more frequently due to kinetic effects during island formation upon deposition at room temperature.


Assuntos
Adenina/química , Ouro/química , Teoria Quântica , Algoritmos , Microscopia de Tunelamento , Modelos Moleculares , Propriedades de Superfície , Temperatura
7.
J Chem Phys ; 129(18): 184707, 2008 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-19045423

RESUMO

Using ultrahigh vacuum scanning tunneling microscopy (STM) and ab initio density functional theory, we have investigated in detail structures formed by cytosine on the Au(111) surface in clean ultrahigh vacuum conditions. In spite of the fact that the ground state of this DNA base on the surface is shown to be an ordered arrangement of cytosine one-dimensional branches (filaments), this structure has never been observed in our STM experiments. Instead, disordered structures are observed, which can be explained by only a few elementary structural motifs: filaments, five- and sixfold rings, which randomly interconnect with each other forming bent chains, T junctions, and nanocages. The latter may have trapped smaller structures inside. The formation of such an unusual assembly is explained by simple kinetic arguments as a liquid-glass transition.


Assuntos
Citosina/química , DNA/química , Ouro/química , Dimerização , Cinética , Nanotecnologia , Teoria Quântica , Propriedades de Superfície
9.
Small ; 4(9): 1494-500, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18680099

RESUMO

Two molecular phases of the DNA base adenine (A) on a Au(111) surface are observed by using STM under ultrahigh-vacuum conditions. One of these phases is reported for the first time. A systematic approach that considers all possible gas-phase two-dimensional arrangements of A molecules connected by double hydrogen bonds with each other and subsequent ab initio DFT calculations are used to characterize and identify the two phases. The influence of the gold surface on the structure of A assemblies is also discussed. DFT is found to predict a smooth corrugation potential of the gold surface that will enable A molecules to move freely across the surface at room temperature. This conclusion remains unchanged if van der Waals interaction between A and gold is also approximately taken into account. DFT calculations of the A pairs on the Au(111) surface show its negligible effect on the hydrogen bonding between the molecules. These results justify the gas-phase analysis of possible assemblies on flat metal surfaces. Nevertheless, the fact that it is not the most stable gas-phase monolayer that is actually observed on the gold surface indicates that the surface still plays a subtle role, which needs to be properly addressed.


Assuntos
Adenina/química , Ouro/química , Microscopia de Tunelamento , Modelos Moleculares , Conformação Molecular , Propriedades de Superfície
10.
Science ; 319(5861): 312-5, 2008 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-18079368

RESUMO

Nonsymmetrical organic molecules adsorbed on solid surfaces may assemble into random networks, thereby providing model systems for organic glasses that can be directly observed by scanning tunneling microscopy (STM). We investigated the structure of a disordered cytosine network on a gold(111) surface created by thermal quenching, to temperatures below 150 K, of the two-dimensional fluid present on the surface at room temperature. Comparison of STM images to density functional theory calculations allowed us to identify three elementary structural motifs (zigzag filaments and five- and six-membered rings) that underlie the whole supramolecular random network. The identification of elementary structural motifs may provide a new framework for understanding medium-range order in amorphous and glassy systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...