Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 80
Filtrar
1.
Nutrition ; 125: 112494, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38843564

RESUMO

BACKGROUND AND AIMS: Measurement of body composition using computed tomography (CT) scans may be a viable clinical tool for low muscle mass assessment in oncology. However, longitudinal assessments are often infeasible with CT. Clinically accessible body composition technologies can be used to track changes in fat-free mass (FFM) or muscle, though their accuracy may be impacted by cancer-related physiological changes. The purpose of this study was to examine the agreement among accessible body composition method with criterion methods for measures of whole-body FFM measurements and, when possible, muscle mass for the classification of low muscle in patients with cancer. METHODS: Patients with colorectal cancer were recruited to complete measures of whole-body DXA, air displacement plethysmography (ADP), and bioelectrical impedance analysis (BIA). These measures were used alone, or in combination to construct the criterion multicompartment (4C) mode for estimating FFM. Patients also underwent abdominal CT scans as part of routine clinical assessment. Agreement of each method with 4C model was analyzed using mean constant error (CE = criterion - alternative), linear regression including root mean square error (RMSE), Bland-Altman limits of agreement (LoA) and mean percentage difference (MPD). Additionally, appendicular lean soft tissue index (ALSTI) measured by DXA and predicted by CT were compared for the absolute agreement, while the ALSTI values and skeletal muscle index by CT were assessed for agreement on the classification of low muscle mass. RESULTS: Forty-five patients received all measures for the 4C model and 25 had measures within proximity of clinical CT measures. Compared to 4C, DXA outperformed ADP and BIA by showing the strongest overall agreement (CE = 1.96 kg, RMSE = 2.45 kg, MPD = 98.15 ± 2.38%), supporting its use for body composition assessment in patients with cancer. However, CT cutoffs for skeletal muscle index or CT-estimated ALSTI were lower than DXA ALSTI (average 1.0 ± 1.2 kg/m2) with 24.0% to 32.0% of patients having a different low muscle classification by CT when compared to DXA. CONCLUSIONS: Despite discrepancies between clinical body composition assessment and the criterion multicompartment model, DXA demonstrates the strongest agreement with 4C. Disagreement between DXA and CT for low muscle mass classification prompts further evaluation of the measures and cutoffs used with each technique. Multicompartment models may enhance our understanding of body composition variations at the individual patient level and improve the applicability of clinically accessible technologies for classification and monitoring change over time.

2.
J Transl Med ; 22(1): 515, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38812005

RESUMO

The appropriate use of predictive equations in estimating body composition through bioelectrical impedance analysis (BIA) depends on the device used and the subject's age, geographical ancestry, healthy status, physical activity level and sex. However, the presence of many isolated predictive equations in the literature makes the correct choice challenging, since the user may not distinguish its appropriateness. Therefore, the present systematic review aimed to classify each predictive equation in accordance with the independent parameters used. Sixty-four studies published between 1988 and 2023 were identified through a systematic search of international electronic databases. We included studies providing predictive equations derived from criterion methods, such as multi-compartment models for fat, fat-free and lean soft mass, dilution techniques for total-body water and extracellular water, total-body potassium for body cell mass, and magnetic resonance imaging or computerized tomography for skeletal muscle mass. The studies were excluded if non-criterion methods were employed or if the developed predictive equations involved mixed populations without specific codes or variables in the regression model. A total of 106 predictive equations were retrieved; 86 predictive equations were based on foot-to-hand and 20 on segmental technology, with no equations used the hand-to-hand and leg-to-leg. Classifying the subject's characteristics, 19 were for underaged, 26 for adults, 19 for athletes, 26 for elderly and 16 for individuals with diseases, encompassing both sexes. Practitioners now have an updated list of predictive equations for assessing body composition using BIA. Researchers are encouraged to generate novel predictive equations for scenarios not covered by the current literature.Registration code in PROSPERO: CRD42023467894.


Assuntos
Composição Corporal , Impedância Elétrica , Humanos , Masculino , Feminino , Padrões de Referência , Adulto , Pessoa de Meia-Idade
3.
Nutrition ; 123: 112414, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38564838

RESUMO

OBJECTIVE: Cross-sectional evidence has demonstrated that parallel reactance obtained by bioelectrical impedance analysis (BIA) may be an alternative to the regularly used series of measurements to predict intracellular water (ICW) in athletes. However, we are not aware of any studies that have determined the predictive role or compared the effectiveness of both series and parallel reactance for tracking ICW changes during an athletic season. The main aim of this study was to determine the predictive role and compare both series and parallel reactance (Xc) in tracking ICW during an athletic season. RESEARCH METHODS AND PROCEDURES: This longitudinal study analyzed 108 athletes in the preparatory and competitive periods. Using dilution techniques, total body water (TBW) and extracellular water (ECW) were determined and ICW was calculated. Resistance (R), Xc, and impedance (Z) standardized for height were obtained through BIA spectroscopy using a frequency of 50kHz in a series array and then mathematically transformed in a parallel array. RESULTS: Multiple regression analyses showed that only changes in parallel Xc and capacitance (CAP) (P < 0.05) were predictors of delta ICW during the sports season. In contracts, this was not the case for Xcs. Both changes in R and Z, series and parallel, predicted similarly the changes in ECW and TBW (P < 0.05) in athletes. CONCLUSION: Our findings highlight the potential of parallel BIA values to detect changes in body water compartments over a competitive season. These data provide preliminary evidence that changes in parallel Xc/H, and ultimately CAP, represent valid markers of alterations in cell volume during a sports season.


Assuntos
Atletas , Composição Corporal , Água Corporal , Impedância Elétrica , Esportes , Humanos , Atletas/estatística & dados numéricos , Masculino , Estudos Longitudinais , Adulto Jovem , Feminino , Esportes/fisiologia , Adulto , Estações do Ano , Estudos Transversais , Adolescente
5.
Br J Nutr ; 131(9): 1579-1590, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38299306

RESUMO

We aim to understand the effects of hydration changes on athletes' neuromuscular performance, on body water compartments, fat-free mass hydration and hydration biomarkers and to test the effects of the intervention on the response of acute dehydration in the hydration indexes. The H2OAthletes study (clinicaltrials.gov ID: NCT05380089) is a randomised controlled trial in thirty-eight national/international athletes of both sexes with low total water intake (WI) (i.e. < 35·0 ml/kg/d). In the intervention, participants will be randomly assigned to the control (CG, n 19) or experimental group (EG, n 19). During the 4-day intervention, WI will be maintained in the CG and increased in the EG (i.e. > 45·0 ml/kg/d). Exercise-induced dehydration protocols with thermal stress will be performed before and after the intervention. Neuromuscular performance (knee extension/flexion with electromyography and handgrip), hydration indexes (serum, urine and saliva osmolality), body water compartments and water flux (dilution techniques, body composition (four-compartment model) and biochemical parameters (vasopressin and Na) will be evaluated. This trial will provide novel evidence about the effects of hydration changes on neuromuscular function and hydration status in athletes with low WI, providing useful information for athletes and sports-related professionals aiming to improve athletic performance.


Assuntos
Atletas , Água Corporal , Desidratação , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , Desempenho Atlético/fisiologia , Composição Corporal , Ingestão de Líquidos/fisiologia , Eletromiografia , Exercício Físico/fisiologia , Força da Mão/fisiologia , Estado de Hidratação do Organismo , Equilíbrio Hidroeletrolítico/fisiologia , Ensaios Clínicos Controlados Aleatórios como Assunto
6.
Nutrients ; 15(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960291

RESUMO

The need for a practical method for routine determination of body fat has progressed from body mass index (BMI) to bioelectrical impedance analysis (BIA) and smartphone two-dimensional imaging. We determined agreement in fat mass (FM) estimated with 50 kHz BIA and smartphone single lateral standing digital image (SLSDI) compared to dual X-ray absorptiometry (DXA) in 188 healthy adults (69 females and 119 males). BIA underestimated (p < 0.0001) FM, whereas SLSDI FM estimates were not different from DXA values. Based on limited observations that BIA overestimated fat-free mass (FFM) in obese adults, we tested the hypothesis that expansion of the extracellular water (ECW), expressed as ECW to intracellular water (ECW/ICW), results in underestimation of BIA-dependent FM. Using a general criterion of BMI > 25 kg/m2, 54 male rugby players, compared to 40 male non-rugby players, had greater (p < 0.001) BMI and FFM but less (p < 0.001) FM and ECW/ICW. BIA underestimated (p < 0.001) FM in the non-rugby men, but SLSDI and DXA FM estimates were not different in both groups. This finding is consistent with the expansion of ECW in individuals with excess body fat due to increased adipose tissue mass and its water content. Unlike SLSDI, 50 kHz BIA predictions of FM are affected by an increased ECW/ICW associated with greater adipose tissue. These findings demonstrate the validity, practicality, and convenience of smartphone SLSDI to estimate FM, seemingly not influenced by variable hydration states, for healthcare providers in clinical and field settings.


Assuntos
Tecido Adiposo , Composição Corporal , Adulto , Feminino , Humanos , Masculino , Absorciometria de Fóton/métodos , Impedância Elétrica , Tecido Adiposo/diagnóstico por imagem , Tecido Adiposo/metabolismo , Índice de Massa Corporal , Água/metabolismo
8.
Scand J Med Sci Sports ; 33(10): 1998-2008, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37403709

RESUMO

BACKGROUND: The aim of this study was to determine the predictive role of series and parallel bioelectrical impedance-derived parameters in predicting total body (TBW), intracellular (ICW), and extracellular water (ECW) in athletes. METHODS: This cross-sectional study analyzed 134 male (21.33 ± 5.11 years) and 64 female (20.45 ± 5.46 years) athletes. Using dilution techniques, TBW and ECW were determined while ICW was the difference between both. Raw and standardized for height (/H) bioelectrical resistance (R), reactance (Xc), and impedance (Z) values were obtained using a phase-sensitive device at a single frequency in a series array (s). These were mathematically transformed in a parallel array (p) and capacitance (CAP). Fat-free mass (FFM) was assessed by dual-energy X-ray absorptiometry. RESULTS: Multiple regressions adjusted for age and FFM show that R/Hs, Z/Hs, R/Hp, and Z/Hp were significant predictors of TBW (p < 0.001 in females and males). While Xc/Hs did not predict ICW, Xc/Hp was a predictor (p < 0.001 in females and Males). In females, R/H and Z/H predicted similarly TBW, ICW, and ECW. In males, R/Hs was considered a better predictor than R/Hp for TBW and ICW, and the Xc/Hp was considered the best predictor for ICW. Another significant predictor of ICW was CAP (p < 0.001 in females and males). CONCLUSION: This study highlights the potential value of parallel bioelectrical impedance values to identify fluid compartments in athletes as an alternative to the regularly used series measurements. Moreover, this study supports Xc in parallel, and ultimately CAP, as valid indicators of cell volume.


Assuntos
Atletas , Água Corporal , Humanos , Masculino , Feminino , Impedância Elétrica , Estudos Transversais , Água , Composição Corporal
9.
Rev Endocr Metab Disord ; 24(3): 563-583, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37043140

RESUMO

Bioelectrical impedance analysis (BIA) is the most widely used technique in body composition analysis. When we focus the use of phase sensitive BIA on its raw parameters Resistance (R), Reactance (Xc) and Phase Angle (PhA), we eliminate the bias of using predictive equations based on reference models. In particular PhA, have demonstrated their prognostic utility in multiple aspects of health and disease. In recent years, as a strong association between prognostic and diagnostic factors has been observed, scientific interest in the utility of PhA has increased. In the different fields of knowledge in biomedical research, there are different ways of assessing the impact of a scientific-technical aspect such as PhA. Single frequency with phase detection bioimpedance analysis (SF-BIA) using a 50 kHz single frequency device and tetrapolar wrist-ankle electrode placement is the most widely used bioimpedance approach for characterization of whole-body composition. However, the incorporation of vector representation of raw bioelectrical parameters and direct mathematical calculations without the need for regression equations for the analysis of body compartments has been one of the most important aspects for the development of research in this area. These results provide new evidence for the validity of phase-sensitive bioelectrical measurements as biomarkers of fluid and nutritional status. To enable the development of clinical research that provides consistent results, it is essential to establish appropriate standardization of PhA measurement techniques. Standardization of test protocols will facilitate the diagnosis and assessment of the risk associated with reduced PhA and the evaluation of changes in response to therapeutic interventions. In this paper, we describe and overview the value of PhA in biomedical research, technical and instrumental aspects of PhA research, analysis of Areas of clinical research (cancer patients, digestive and liver diseases, critical and surgical patients, Respiratory, infectious, and COVID-19, obesity and metabolic diseases, Heart and kidney failure, Malnutrition and sarcopenia), characterisation of the different research outcomes, Morphofunctional assessment in disease-related malnutrition and other metabolic disorders: validation of PhA with reference clinical practice techniques, strengths and limitations. Based on the detailed study of the measurement technique, some of the key issues to be considered in future PhA research. On the other hand, it is important to assess the clinical conditions and the phenotype of the patients, as well as to establish a disease-specific clinical profile. The appropriate selection of the most critical outcomes is another fundamental aspect of research.


Assuntos
COVID-19 , Desnutrição , Humanos , Composição Corporal/fisiologia , Estado Nutricional , Biomarcadores , Impedância Elétrica
11.
Scand J Med Sci Sports ; 33(7): 1072-1078, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36951582

RESUMO

Physiological differences have been reported between individuals who have habitual low (LOW) and high (HIGH) water intake (WI). The aims of this study were to explore body water compartments, hydration status, and fat-free mass (FFM) hydration of elite athletes exposed to different habitual WI. A total of 68 athletes (20.6 ± 5.3 years, 23 females) participated in this observational cross-sectional study. Total WI was assessed by seven-day food diaries and through WI, athletes were categorized as HIGH (n = 28, WI≥40.0 mL/kg/d) and LOW (n = 40, WI≤35.0 mL/kg/d). Total body water (TBW) and extracellular water (ECW) were determined by dilution techniques and intracellular water (ICW) as TBW-ECW. Hydration status was assessed by urine-specific gravity (USG) using a refractometer. Fat (FM) and FFM were assessed by dual-energy X-ray absorptiometry (DXA). The FFM hydration was calculated by TBW/FFM. The USG was statistically different between groups for females (LOW: 1.024 ± 0.003; HIGH: 1.015 ± 0.006; p = 0.005) and males (LOW: 1.024 ± 0.002; HIGH: 1.018 ± 0.005; p < 0.001). No differences between groups were detected in body water compartments and FFM hydration in both sexes (p > 0.05). Multiple regression showed that WI remains a predictor of USG regardless of FFM, age, and sex (ß = -0.0004, p < 0.01). We concluded that LOW athletes were classified as dehydrated through USG although their water compartments were not different from HIGH athletes. These results suggest that LOW athletes may expectedly maintain the body water compartments' homeostasis through endocrine mechanisms. Interventions should be taken to encourage athletes to have sufficient WI to maintain optimal hydration.


Assuntos
Água Corporal , Ingestão de Líquidos , Masculino , Feminino , Humanos , Água Corporal/fisiologia , Atletas , Água , Absorciometria de Fóton/métodos , Composição Corporal/fisiologia
12.
Rev Endocr Metab Disord ; 24(3): 415-428, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36847994

RESUMO

Localized bioimpedance (L-BIA) measurements are an innovative method to non-invasively identify structural derangement of soft tissues, principally muscles, and fluid accumulation in response to traumatic injury. This review provides unique L-BIA data demonstrating significant relative differences between injured and contralateral non-injured regions of interest (ROI) associated with soft tissue injury. One key finding is the specific and sensitive role of reactance (Xc), measured at 50 kHz with a phase-sensitive BI instrument, to identify objective degrees of muscle injury, localized structural damage and fluid accretion, determined using magnetic resonance imaging. The predominant effect of Xc as an indicator of severity of muscle injury is highlighted in phase angle (PhA) measurements. Novel experimental models utilizing cooking-induced cell disruption, saline injection into meat specimens, and measurements of changing amounts of cells in a constant volume provide empirical evidence of the physiological correlates of series Xc as cells in water. Findings of strong associations of capacitance, computed from parallel Xc (XCP), with whole body counting of 40-potassium and resting metabolic rate support the hypothesis that parallel Xc is a biomarker of body cell mass. These observations provide a theoretical and practical basis for a significant role of Xc, and hence PhA, to identify objectively graded muscle injury and to reliably monitor progress of treatment and return of muscle function.


Assuntos
Imageamento por Ressonância Magnética , Músculos , Humanos , Impedância Elétrica
13.
Rev Endocr Metab Disord ; 24(3): 451-464, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36484943

RESUMO

Phase angle (PhA) is a recently proposed marker of nutritional status in many clinical conditions. Its use in patients with obesity presents different critical concerns due to the higher variability of the two measured parameters (resistance, R, and reactance, Xc) that contribute to the determination of PhA. Controversial is the relation between PhA and BMI that might vary with graded levels of obesity due to the variation in fat and free fat mass. Obesity is frequently associated with metabolic, hepatic, cardiovascular and kidney diseases that introduce variations in PhA values, in relation to multimorbidity and severity degree of these diseases. It is reported that the improvement of clinical condition is associated with a positive change in PhA. Also, the treatment of obesity with weight loss might confirm this effect, but with different responses in relation to the type and duration of the intervention applied. In fact, the effect appears not only related to the percentage of weight loss but also the possible loss of free fat mass and the nutritional, metabolic and structural modifications that might follow each therapeutic approach to decrease body weight. We can conclude that the PhA could be used as marker of health status in patients with obesity supporting an appropriate weight loss intervention to monitor efficacy and fat free mass preservation.


Assuntos
Composição Corporal , Sobrepeso , Humanos , Composição Corporal/fisiologia , Sobrepeso/terapia , Obesidade/terapia , Estado Nutricional , Redução de Peso
15.
Eur J Clin Nutr ; 77(2): 202-211, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36253539

RESUMO

BACKGROUND/OBJECTIVES: Bioelectrical impedance (BIA) whole-body and regional raw parameters have been used to develop prediction models to estimate whole-body lean soft tissue (LSTM), with less attention being given to the development of models for regional LSTM. Therefore, we aimed to develop and validate BIA-derived equations predicting regional LSTM against dual x-ray absorptiometry (DXA) in healthy adults. SUBJECTS/METHODS: 149 adults were included in this cross-sectional investigation. Whole-body and regional LSTM were assessed by DXA, and raw bioelectrical parameters of distinct body regions were measured using a 50 kHz phase sensitive BIA analyzer. BIA-derived equations were developed using a stepwise multiple linear regression approach in 2/3 of the sample and cross-validated in the remaining sample. RESULTS: Slopes and intercepts of predicted LSTM and DXA measured LSTM did not differ from 1 and 0, respectively, for each region (p ≥ 0.05), with the exception for the trunk (p < 0.05). The BIA-derived equations exhibited a strong relationship (p < 0.001) between the predicted and measured LSTM for each of the following body regions: right and left arms (R = 0.94; R = 0.96), right and left legs (R = 0.88; R = 0.88), upper body (R = 0.96), lower body (R = 0.89), right and left sides of the body (R = 0.94; R = 0.94), and trunk (R = 0.90). Agreement analyses revealed no associations between the differences and the means of the predicted and DXA-derived LSTM. CONCLUSION: The developed BIA-derived equations provide a valid estimate of regional LSTM in middle-aged healthy adults, representing a cost-effective and time-efficient alternative to DXA for the assessment and identification of LSTM imbalances in both clinical and sport-specific contexts.


Assuntos
Composição Corporal , Pessoa de Meia-Idade , Humanos , Adulto , Impedância Elétrica , Estudos Transversais , Absorciometria de Fóton , Modelos Lineares , Reprodutibilidade dos Testes
16.
Rev Endocr Metab Disord ; 24(3): 371-379, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36336754

RESUMO

Bioelectrical impedance (BI) is a practical method to assess body composition in health and disease. This method relies on the passive conduction of an applied, safe, low-level alternating current through water and electrolytes in the body. Using a phase-sensitive device, BI yields measurements of impedance (Z) and its components, resistance (R) and reactance (Xc), that are related geometrically as phase angle (PhA). In vitro studies provide empirical evidence relating BI measurements to physiological variables. Cooking raw food samples results in greater decreases in PhA, predominantly Xc, with smaller reductions R indicating destruction of cell membrane integrity with simultaneous movement of fluid from intracellular to extracellular space. Infusion of saline into a cell-free model shows a proportional decrease in R with increases in volume. Saline infusion in a composite model of cells disproportionately decreases Xc and PhA, compared to R, demonstrating greater relative expansion of extracellular water (ECW) with a lesser relative increase in total fluid volume. Surgical patients treated with fluid infusion and diuresis demonstrate changes in Xc predominantly indicating relative changes in ECW with lesser variations in R indicating fluctuations in total fluid volume. Proteomics studies disclose strong independent associations of PhA with protein markers of fluid overload and protein proliferation. Interpretations of PhA measurements for body cell mass should be examined in the context of hydration status.


Assuntos
Composição Corporal , Água , Humanos , Impedância Elétrica
17.
Sensors (Basel) ; 22(21)2022 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-36366063

RESUMO

Background: Obesity is chronic health problem. Screening for the obesity phenotype is limited by the availability of practical methods. Methods: We determined the reproducibility and accuracy of an automated machine-learning method using smartphone camera-enabled capture and analysis of single, two-dimensional (2D) standing lateral digital images to estimate fat mass (FM) compared to dual X-ray absorptiometry (DXA) in females and males. We also report the first model to predict abdominal FM using 2D digital images. Results: Gender-specific 2D estimates of FM were significantly correlated (p < 0.001) with DXA FM values and not different (p > 0.05). Reproducibility of FM estimates was very high (R2 = 0.99) with high concordance (R2 = 0.99) and low absolute pure error (0.114 to 0.116 kg) and percent error (1.3 and 3%). Bland−Altman plots revealed no proportional bias with limits of agreement of 4.9 to −4.3 kg and 3.9 to −4.9 kg for females and males, respectively. A novel 2D model to estimate abdominal (lumbar 2−5) FM produced high correlations (R2 = 0.99) and concordance (R2 = 0.99) compared to DXA abdominal FM values. Conclusions: A smartphone camera trained with machine learning and automated processing of 2D lateral standing digital images is an objective and valid method to estimate FM and, with proof of concept, to determine abdominal FM. It can facilitate practical identification of the obesity phenotype in adults.


Assuntos
Composição Corporal , Smartphone , Masculino , Feminino , Humanos , Impedância Elétrica , Índice de Massa Corporal , Reprodutibilidade dos Testes , Absorciometria de Fóton/métodos , Obesidade/diagnóstico por imagem , Tecido Adiposo/diagnóstico por imagem , Gordura Abdominal/diagnóstico por imagem , Aprendizado de Máquina
19.
Nutrients ; 14(13)2022 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807907

RESUMO

Background: COVID-19 has taken on pandemic proportions with growing interest in prognostic factors. Overhydration is a risk factor for mortality in several medical conditions with its role in COVID-19, assessed with bioelectrical impedance (BI), gaining research interest. COVID-19 affects hydration status. The aim was to determine the hydration predictive role on 90 d survival COVID-19 and to compare BI assessments with traditional measures of hydration. Methods: We studied 127 consecutive COVID-19 patients. Hydration status was estimated using a 50 kHz phase-sensitive BI and estimated, compared with clinical scores and laboratory markers to predict mortality. Results: Non-surviving COVID-19 patients had significantly higher hydration 85.2% (76.9−89.3) vs. 73.7% (73.2−82.1) and extracellular water/total body water (ECW/TBW) 0.67 (0.59−0.75) vs. 0.54 (0.48−0.61) (p = 0.001, respectively), compared to surviving. Patients in the highest hydration tertile had increased mortality (p = 0.012), Intensive Care Unit (ICU) admission (p = 0.027), COVID-19 SEIMC score (p = 0.003), and inflammation biomarkers [CRP/prealbumin (p = 0.011)]. Multivariate analysis revealed that hydration status was associated with increased mortality. HR was 2.967 (95%CI, 1.459−6.032, p < 0.001) for hydration and 2.528 (95%CI, 1.664−3.843, p < 0.001) for ECW/TBW, which were significantly greater than traditional measures: CRP/prealbumin 3.057(95%CI, 0.906−10.308, p = 0.072) or BUN/creatinine 1.861 (95%CI, 1.375−2.520, p < 0.001). Hydration > 76.15% or ECW/TBW > 0.58 were the cut-off values predicting COVID-19 mortality with 81.3% and 93.8% sensitivity and 64 and 67.6% specificity, respectively. Hydration status offers a sensitive and specific prognostic test at admission, compared to established poor prognosis parameters. Conclusions and Relevance: Overhydration, indicated as high hydration (>76.15%) and ECW/TBW (>0.58), were significant predictors of COVID-19 mortality. These findings suggest that hydration evaluation with 50 kHz phase-sensitive BI measurements should be routinely included in the clinical assessment of COVID-19 patients at hospital admission, to identify increased mortality risk patients and assist medical care.


Assuntos
COVID-19 , Desequilíbrio Hidroeletrolítico , Biomarcadores , Composição Corporal , Água Corporal , Impedância Elétrica , Humanos , Pré-Albumina , RNA Viral , SARS-CoV-2
20.
Biology (Basel) ; 11(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35741420

RESUMO

BACKGROUND: Sitting or standing during prolonged periods is related to leg swelling. It is unknown if interrupting sedentary behavior can attenuate lower leg swelling. We aimed to examine if adding sit-to-stand transitions prevents lower leg swelling as compared with uninterrupted motionless standing and sitting, using localized bioelectrical impedance raw parameters. METHODS: Twenty adults participated in this crossover randomized controlled trial and acted out three conditions: (1) uninterrupted, motionless standing; (2) uninterrupted motionless sitting; (3) sit-to-stand transitions (1 min sitting followed by 1 min standing). Localized resistance (R), reactance (Xc), impedance (Z) and phase angle (PhA) were assessed at baseline, at 10 min and at 20 min for each condition. RESULTS: For sitting and standing conditions, R and Xc values decreased after 10 and 20 min. Uninterrupted sitting resulted in the highest decrease in R (ΔSit - ΔStand = -9.5 Ω (4.0), p = 0.019; ΔSit - ΔInt = -11.6 Ω (4.0), p = 0.005). For standardized R (R/knee height), sitting was the condition with a greater decrease (ΔSit - ΔStand = -30.5 Ω/m (13.4), p = 0.025; ΔSit - ΔInt = -35.0 Ω/m (13.5), p = 0.011). CONCLUSIONS: Interrupting sedentary behavior by changing from sit to stand position during short periods may be effective at preventing leg swelling.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...