Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Comput Neurosci ; 8: 145, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25477811

RESUMO

We examine the emergence of collective dynamical structures and complexity in a network of interacting populations of neuronal oscillators. Each population consists of a heterogeneous collection of globally-coupled theta neurons, which are a canonical representation of Type-1 neurons. For simplicity, the populations are arranged in a fully autonomous driver-response configuration, and we obtain a full description of the asymptotic macroscopic dynamics of this network. We find that the collective macroscopic behavior of the response population can exhibit equilibrium and limit cycle states, multistability, quasiperiodicity, and chaos, and we obtain detailed bifurcation diagrams that clarify the transitions between these macrostates. Furthermore, we show that despite the complexity that emerges, it is possible to understand the complicated dynamical structure of this system by building on the understanding of the collective behavior of a single population of theta neurons. This work is a first step in the construction of a mathematically-tractable network-of-networks representation of neuronal network dynamics.

2.
Neural Comput ; 25(12): 3207-34, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24047318

RESUMO

We design and analyze the dynamics of a large network of theta neurons, which are idealized type I neurons. The network is heterogeneous in that it includes both inherently spiking and excitable neurons. The coupling is global, via pulselike synapses of adjustable sharpness. Using recently developed analytical methods, we identify all possible asymptotic states that can be exhibited by a mean field variable that captures the network's macroscopic state. These consist of two equilibrium states that reflect partial synchronization in the network and a limit cycle state in which the degree of network synchronization oscillates in time. Our approach also permits a complete bifurcation analysis, which we carry out with respect to parameters that capture the degree of excitability of the neurons, the heterogeneity in the population, and the coupling strength (which can be excitatory or inhibitory). We find that the network typically tends toward the two macroscopic equilibrium states when the neuron's intrinsic dynamics and the network interactions reinforce one another. In contrast, the limit cycle state, bifurcations, and multistability tend to occur when there is competition among these network features. Finally, we show that our results are exhibited by finite network realizations of reasonable size.


Assuntos
Algoritmos , Encéfalo/fisiologia , Redes Neurais de Computação , Neurônios/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...