Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 12(2): 461-73, 2010 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-20023824

RESUMO

We present a kinetic Monte Carlo lattice gas model including top and bridge sites on a square lattice, with pairwise lateral interactions between the adsorbates. In addition to the pairwise lateral interactions we include an additional interaction: an adsorbate is forbidden to adsorb on a bridge site formed by two surface atoms when both surface atoms are already forming a bond with an adsorbate. This model is used to reproduce the low and high coverage adsorption behaviour of CO on Pt(100) and Rh(100). The parameter set used to simulate CO on Pt(100) produces the c(2 x 2)-2t ordered structure at 0.50 ML coverage, a one-dimensionally ordered structure similar to the experimentally observed (3 square root(2) x square root(2)) - 2t + 2b structure at 0.67 ML coverage, the c(4 x 2)-4t + 2b ordered structure at 0.75 ML coverage, and the recently reported c(6 x 2)-6t + 4b ordered structure at 0.83 ML coverage. The (5 square root(2) x square root(2)) ordered structure at 0.60 ML coverage is not reproduced by our model. The parameter set used to simulate CO on Rh(100) produces the c(2 x 2)-2t ordered structure at 0.50 ML coverage, a one-dimensionally ordered structure similar to the experimentally observed (4 square root(2) x square root(2)) - 2t + 4b structure at 0.75 ML coverage, and the c(6 x 2)-6t + 4b ordered structure at 0.83 ML coverage. Additionally, the simulated change of top and bridge site occupation as a function of coverage matches the trend in experimental vibrational peak intensities.

2.
Langmuir ; 21(18): 8302-11, 2005 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-16114935

RESUMO

Lateral adsorbate-adsorbate interactions result in variation of the desorption rate constants with coverage. This effect can be studied in great detail from the shape of a multi-isotherm. To produce the multi-isotherm, the temperature is increased in a (semi)stepwise fashion to some temperature, followed by maintaining this temperature for a prolonged time. Then, the temperature is stepped to a higher value and held constant at this new temperature. This cycle is continued until all of the adsorbates have desorbed. Using a detailed kinetic Monte Carlo model and an optimization algorithm based on Evolutionary Strategy, we are able to reproduce the shape of the experimentally measured multi-isotherm of nitrogen on Rh(111) and obtain the lateral interactions between the nitrogen atoms.

3.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(4 Pt 2): 046707, 2003 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-12786529

RESUMO

We have used dynamic Monte Carlo(DMC) methods and analytical techniques to analyze single-file systems for which diffusion is infinitely fast. We have simplified the master equation removing the fast reactions, and we have introduced a DMC algorithm for infinitely fast diffusion. The DMC method for fast diffusion give similar results as the standard DMC with high diffusion rates. We have investigated the influence of characteristic parameters, such as pipe length, adsorption, desorption, and conversion rate constants on the steady-state properties of single-file systems with a reaction, looking at cases when all the sites are reactive and when only some of them are reactive. We find that the effect of fast diffusion on single-file properties of the system is absent even when diffusion is infinitely fast. Diffusion is not important in these systems. Smaller systems are less reactive and the occupancy profiles for infinitely long systems show an exponential behavior.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 67(3 Pt 2): 036104, 2003 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12689129

RESUMO

We derive analytical expressions for the reactivity of a single-file system with fast diffusion and particles entering and leaving the system at one end. If the conversion reaction is fast, then the reactivity depends only very weakly on the system size, and the conversion is about 100%. If the reaction is slow, then the reactivity becomes proportional to the system size, the loading, and the reaction rate constant. If the system size increases the reactivity goes to the geometric mean of the reaction rate constant and the rate of particles entering and leaving the system. For large systems, the number of unconverted particles decreases exponentially with distance from the open end.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 65(6 Pt 2): 066701, 2002 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-12188862

RESUMO

We have used Monte Carlo methods and analytical techniques to investigate the influence of the characteristic parameters, such as pipe length, diffusion, adsorption, desorption, and reaction rate constants on the steady-state properties of single-file systems with a reaction. We looked at cases when all the sites are reactive and when only some of them are reactive. Comparisons between mean-field predictions and Monte Carlo simulations for the occupancy profiles and reactivity are made. Substantial differences between mean-field and the simulations are found when rates of diffusion are high. Mean-field results only include single-file behavior by changing the diffusion rate constant, but it effectively allows passing of particles. Reactivity converges to a limit value if more reactive sites are added: sites in the middle of the system have little or no effect on the kinetics. Occupancy profiles show approximately exponential behavior from the ends to the middle of the system.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 66(6 Pt 2): 066705, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12513442

RESUMO

We have used Monte Carlo methods and analytical techniques to investigate the influence of the characteristics, such as pipe length, diffusion, adsorption, desorption, and reaction rates on the transient properties of single-file systems. The transient or the relaxation regime is the period in which the system is evolving to equilibrium. We have studied the system when all the sites are reactive and also when only some of them are reactive. Comparisons between mean-field predictions, cluster approximation predictions, and Monte Carlo simulations for the relaxation time of the system are shown. We outline the cases where the mean-field analysis gives good results compared to dynamic Monte Carlo results. For some specific cases we can analytically derive the relaxation time. Occupancy profiles for different distributions of the sites both for the mean field and simulations are compared. Different results for slow and fast reaction systems and different distributions of reactive sites are discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...