Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(16)2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39203184

RESUMO

The objective of the research outlined in this paper is to propose an eco-friendly solution that simultaneously contributes to improving the characteristics of polymer composites. The analyzed solution entails the use of recycled aggregate from crushed concrete rubble. The authors conducted experiments to test the consistency, density, flexural strength, compressive strength, and microstructure of polymer concrete (PC) with different proportions of recycled aggregate (RA). It was found that PC with RA had a higher compressive strength, 96 MPa, than PC with natural aggregate, 89.1 MPa, owing to the formation of a double-layer shell of resin and calcium filler on the surface of porous RA grains. Using a resin with a lower viscosity could improve the performance of PC with RA by filling the cracks and penetrating deeper into the pores. RA is a valuable material for PC production, especially when it contains porous grains with poor mechanical properties, which are otherwise unsuitable for other applications. This article also highlights the environmental and economic benefits of using RA in PC, as it can reduce waste generation and natural resource consumption.

2.
Materials (Basel) ; 15(24)2022 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-36556637

RESUMO

The increasing volume of waste and the requirements of sustainable development are the reasons for the research on new waste management concepts. The research results presented in this paper show the effect of recycled aggregate on the selected properties of cement concrete. The aggregates obtained from three types of wastes are tested: recycled concrete paving, crushed ceramic bricks, and burnt sewage sludges. The recycled aggregates replaced 25% and 50% of the volume of the fine aggregate. The tested aggregates worsen the concrete mixes' consistency and decrease, to some extent, the compressive strength of the concrete. However, the tensile splitting strength of the concrete with recycled aggregates is similar to that of the reference concrete. Using recycled aggregates worsens the tightness of the concrete, which manifests itself by increasing water penetration depth. The thermal properties of concrete are slightly affected by the type and content of the recycled aggregate. Considering the expected improvement in recycled aggregate processing, they can be an alternative to natural aggregates. Using recycled aggregates in cement concrete requires extensive studies to search for ways to increase their possible content without worsening concrete performance.

3.
Materials (Basel) ; 13(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143028

RESUMO

In recent years, a nano-modification of the cement composites allowed to develop a number of new materials. The use of even small amount of nano-admixture makes possible not only to improve the physico-mechanical properties of the cement materials, but also to obtain the composite with high usability, optimised for the given application. The basic problem of nano-modification of the cement composites remains the effectiveness of dispersing the nanomaterials inside the cement matrix. This paper deals with the effect of the type and size of the nanoparticles on the tendency to their agglomeration in the cement matrix. The main techniques and methods of dispersing the nanomaterials are presented. It has been demonstrated, on the basis of the results of testing of three nanomodifiers of 0D type (nano-SiO2, nano-Fe3O4 and nano-Pb3O4), how the structure and properties of the nanomaterial affect the behaviour of the particles when dissolving in the mixing water and applying a superplasticiser. The nanoparticles had similar size of about 100 nm but different physico-chemical properties. The methods of dispersing covered the use of high-speed mechanical stirring and ultrasonication. The influence of the method of nano-modifier dispersing on the mechanical performance of the cement composite has been presented on the basis of the results of testing the cement mortars modified with 3% admixture of nano-SiO2.

4.
Materials (Basel) ; 13(16)2020 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-32806651

RESUMO

This paper presents a method of utilising ilmenite MUD created during the production of titanium dioxide (TiO2) according to the sulphate method as an additive for Portland cement composites. After the production process, undissolved MUD was additionally rinsed with water and filtrated in the factory to make it more useful (R-MUD) for implementation and also to turn back some of the by-products of the production of TiO2. R-MUD is less hazardous waste than MUD. It has a lower concentration of sulphuric acid and some heavy metals. The rinsing process raised the concentration of SiO2, which is a valuable part of R-MUD because of its potential pozzolanic activity. This means that the R-MUD might be a reactive substitute of part of Portland cement in building composites. The article presents the results of research on the pozzolanic activity of R-MUD and other materials with proved pozzolanic activity, such as silica fume, fly ash and natural pozzolana (trass). Tests were performed using thermal analysis techniques. The tests showed that the pozzolanic activity or R-MUD after three days is at the same level as silica fume and after 28 days it is twice as high as the activity of fly ash. Beyond the 180th day of curing, R-MUD had the same level of activity as fly ash. The summary is supplemented by calorimetric tests, which confirm the high reactivity of R-MUD compared to other commonly used concrete additives, already in the initial hydration period. In summary, heat of hydration after 72 h of Portland cement with R-MUD is at the same level as the heat of hydration of Portland cement with silica fume and also pure Portland cement grout. The results confirm that the process of formation of micro-silica contained in R-MUD react with calcium hydroxide to form the C-S-H phase, which is responsible for the microstructure of cement composites.

5.
Materials (Basel) ; 13(4)2020 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-32075138

RESUMO

Storing waste in concrete instead of landfills is environmentally friendly and also might make concrete more sustainable if some part is replaced with cement. This article presents a new way of valorising hazardous waste, namely ilmenite MUD from the production of titanium dioxide, which is used as a reactive additive to concrete. In fact, there are currently no articles presenting the way of valorisation that is presented in this paper. The global annual production of MUD is estimated to be about 0.7 million tons. Valorisation is possible due to the additional rinsing and filtering in the factory, which also confirms the novelty of this article. In this operation, the most hazardous compounds are returned back to the factory process. Rinsed mud (RMUD) is a pozzolanic reactive material with the potential use as a substitute of a part of Portland cement in concrete and other cementitious binders, like siliceous fly ash (FA). The level of RMUD pozzolanic activity is as high as the activity of siliceous fly ash. Comparative tests of concretes containing RMUD and fly ash, such as compressive strength, bending strength and shrinkage, were conducted. The concrete containing RMUD reached almost 90% of compressive and 108% of bending strength after 28 days of curing, compared to FA concrete. The results presented in this article are very promising and might point to a new way of valorising ilmenite mud waste.

6.
Materials (Basel) ; 13(1)2019 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-31877846

RESUMO

Resistance to degradation contributes greatly to the durability of materials. The chemical resistance of polymer-cement composites is not yet fully recognized. The goal of the research presented in this paper was to assess the performance of polymer-cement mortars under sulphate aggression, as compared to unmodified cement mortar. Mortars with polymer-to-cement ratios from 0 to 0.20 were stored in either a 5% MgSO4 solution or distilled water for 42 months. During this time, changes in elongation, mass, and compressive strength were determined. The results of these investigations, together with the visual and microscopic observations, allowed us to conclude that polymer-cement composites demonstrated better resistance to the attack of sulphate ions than unmodified cement mortar, even when using Portland cement with enhanced sulphate resistance.

7.
Materials (Basel) ; 12(10)2019 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-31137696

RESUMO

The idea of sustainable development assumes that natural resources must be treated as limited goods and that waste must be managed rationally. This idea and the constant striving to reduce production costs make the use of waste materials as substitutes for traditionally used raw materials from non-renewable sources increasingly popular. In cement concrete technology, there are many possibilities to use waste as components of mortars and concretes. The subject of this paper is a fine-grained material, obtained as a by-product during the preparation of aggregate for mineral-asphalt mixtures. The aim of the research was to test the suitability of the selected type of powder, namely limestone powder, as a component of cement composites. The paper presents an evaluation of the potential of using the limestone powder as a substitute for the fine aggregate, focusing on the impact of such a modification on aspects of durability. The sulfate degradation and chloride ion diffusion in concrete were investigated. The overall desirability function has been determined. It was demonstrated that the satisfactory value of the general desirability can be attributed to most of the investigated concretes. Positive test results support the potential of replacing part of natural fine aggregate with the tested waste limestone dust without a negative impact on the durability of concrete.

8.
Materials (Basel) ; 9(10)2016 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-28773961

RESUMO

Polymer-cement composites (PCCs) are materials in which the polymer and mineral binder create an interpenetrating network and co-operate, significantly improving the performance of the material. On the other hand, the need for the utilization of waste materials is a demand of sustainable construction. Various mineral powders, such as fly ash or blast-furnace slag, are successfully used for the production of cement and concrete. This paper deals with the use of perlite powder, which is a burdensome waste from the process of thermal expansion of the raw perlite, as a component of PCCs. The results of the testing of the mechanical properties of the composite and some microscopic observations are presented, indicating that there is a possibility to rationally and efficiently utilize waste perlite powder as a component of the PCC. This would lead to creating a new type of building material that successfully meets the requirements of sustainable construction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA