Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Tomography ; 10(7): 1074-1088, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39058053

RESUMO

The MR transverse relaxation rate, R2*, has been widely used to detect iron and myelin content in tissue. However, it is also sensitive to macroscopic B0 inhomogeneities. One approach to correct for the B0 effect is to fit gradient-echo signals with the three-parameter model, a sinc function-weighted monoexponential decay. However, such three-parameter models are subject to increased noise sensitivity. To address this issue, this study presents a two-stage fitting procedure based on the three-parameter model to mitigate the B0 effect and reduce the noise sensitivity of R2* measurement in the mouse brain at 7T. MRI scans were performed on eight healthy mice. The gradient-echo signals were fitted with the two-stage fitting procedure to generate R2corr_t*. The signals were also fitted with the monoexponential and three-parameter models to generate R2nocorr* and R2corr*, respectively. Regions of interest (ROIs), including the corpus callosum, internal capsule, somatosensory cortex, caudo-putamen, thalamus, and lateral ventricle, were selected to evaluate the within-ROI mean and standard deviation (SD) of the R2* measurements. The results showed that the Akaike information criterion of the monoexponential model was significantly reduced by using the three-parameter model in the selected ROIs (p = 0.0039-0.0078). However, the within-ROI SD of R2corr* using the three-parameter model was significantly higher than that of the R2nocorr* in the internal capsule, caudo-putamen, and thalamus regions (p = 0.0039), a consequence partially due to the increased noise sensitivity of the three-parameter model. With the two-stage fitting procedure, the within-ROI SD of R2corr* was significantly reduced by 7.7-30.2% in all ROIs, except for the somatosensory cortex region with a fast in-plane variation of the B0 gradient field (p = 0.0039-0.0078). These results support the utilization of the two-stage fitting procedure to mitigate the B0 effect and reduce noise sensitivity for R2* measurement in the mouse brain.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Animais , Camundongos , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Camundongos Endogâmicos C57BL , Masculino , Algoritmos
2.
Pediatr Transplant ; 27(8): e14597, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37664967

RESUMO

BACKGROUND: Chronic kidney disease (CKD) is a relatively rare childhood disease that is associated with a wide array of medical comorbidities. Roughly half of all pediatric patients acquire CKD due to congenital anomalies of the kidneys and urinary tract, and of those with congenital disease, 50% will progress to end-stage kidney disease (ESKD) necessitating a kidney transplantation. The medical sequelae of advanced CKD/ESKD improve dramatically following successful kidney transplantation; however, the impact of kidney transplantation on neurocognition in children is less clear. It is generally thought that cognition improves following kidney transplantation; however, our knowledge on this topic is limited by the sparsity of high-quality data in the context of the relative rarity of pediatric CKD/ESKD. METHOD: We conducted a narrative review to gauge the scope of the literature, using the PubMed database and the following keywords: cognition, kidney, brain, pediatric, neurocognition, intelligence, executive function, transplant, immunosuppression, and neuroimaging. RESULTS: There are few published longitudinal studies, and existing work often includes wide heterogeneity in age at transplant, variable dialysis exposure/duration prior to transplant, and unaccounted cofounders which persist following transplantation, including socio-economic status. Furthermore, the impact of long-term maintenance immunosuppression on the brain and cognitive function of pediatric kidney transplant (KT) recipients remains unknown. CONCLUSION: In this educational review, we highlight what is known on the topic of neurocognition and neuroimaging in the pediatric KT population.


Assuntos
Falência Renal Crônica , Transplante de Rim , Insuficiência Renal Crônica , Criança , Humanos , Falência Renal Crônica/complicações , Diálise Renal , Cognição
3.
Pediatr Transplant ; 27(4): e14505, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36932049

RESUMO

BACKGROUND: Pediatric chronic kidney disease (CKD) patients are at risk for cognitive deficits with worsening disease progression. Limited, existing cross-sectional studies suggest that cognitive deficits may improve following kidney transplantation. We sought to assess cognitive performance in relationship to kidney transplantation and kidney-specific medical variables in a sample of pediatric kidney transplant patients who provided cross-sectional and longitudinal observations. METHODS: A retrospective chart review was conducted in patients who completed pre- and/or post-transplant neurocognitive testing at the University of Iowa from 2015-2021. Cognitive outcomes were investigated with developmentally appropriate, standardized measures. Mixed linear models estimated the impact of transplant status on cognitive function (z-scores). Subsequent post-hoc t-tests on change scores were limited to patients who had provided pre- and post-transplant assessments. RESULTS: Thirty eight patients underwent cognitive assessments: 10 had both pre- and post-transplant cognitive assessments, 11 had pre-transplant assessments only, and 17 had post-transplant data only. Post-transplant status was associated with significantly lower full-scale IQ and slower processing speed compared to pre-transplant status (estimate = -0.32, 95% confidence interval [CI] = -0.52: -0.12; estimate = -0.86, CI = -1.17: -0.55, respectively). Post-hoc analyses confirmed results from the mixed models (FSIQ change score = -0.34, 95% CI = -0.56: -0.12; processing speed change score = -0.98, CI = -1.28: -0.68). Finally, being ≥80 months old at transplant was associated with substantially lower FSIQ compared to being <80 months (estimate = -1.25, 95% CI = -1.94: -0.56). CONCLUSIONS: Our results highlight the importance of monitoring cognitive function following pediatric kidney transplant and identify older transplant age as a risk factor for cognitive deficits.


Assuntos
Transplante de Rim , Insuficiência Renal Crônica , Humanos , Criança , Estudos Retrospectivos , Estudos Transversais , Rim , Insuficiência Renal Crônica/complicações
4.
Pediatr Res ; 91(7): 1735-1740, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-34274959

RESUMO

BACKGROUND: Neurofilament light-chain (NfL) protein is a blood-based marker of neuroaxonal injury. We sought to (1) compare plasma NfL levels in children with chronic kidney disease (CKD) and healthy peers, (2) characterize the relationship between NfL level and kidney function, and (3) evaluate NfL as a predictor of abnormal brain structure in CKD. METHODS: Sixteen children with CKD due to congenital kidney anomalies and 23 typically developing peers were included. Plasma NfL was quantified using single-molecule array immunoassay. Participants underwent structural magnetic resonance imaging. Multiple linear regression models were used to evaluate the association between plasma NfL levels, kidney function, and brain structure. RESULTS: An age × group interaction was identified whereby NfL levels increased with age in the CKD group only (estimate = 0.65; confidence interval (CI) = 0.08-1.22; p = 0.026). Decreased kidney function was associated with higher NfL levels (estimate = -0.10; CI = -0.16 to -0.04; p = 0.003). Lower cerebellar gray matter volume predicted increased plasma NfL levels (estimate = -0.00024; CI = -0.00039 to 0.00009; p = 0.004) within the CKD group. CONCLUSIONS: Children with CKD show accelerated age-related increases in NfL levels. NfL level is associated with lower kidney function and abnormal brain structure in CKD. IMPACT: NfL is a component of the neuronal cytoskeleton providing structural axonal support. Elevated NfL has been described in relation to gray and white matter brain volume loss. We have previously described the abnormal cerebellar gray matter in CKD. We explored the relationship between NfL, CKD, and brain volume. There is an accelerated, age-related increase in NfL level in CKD. Within the CKD sample, NfL level is associated with abnormal kidney function and brain structure. Decreased kidney function may be linked to abnormal neuronal integrity in pediatric CKD.


Assuntos
Proteínas de Neurofilamentos , Insuficiência Renal Crônica , Biomarcadores , Encéfalo/diagnóstico por imagem , Encéfalo/patologia , Criança , Substância Cinzenta , Humanos , Filamentos Intermediários
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...