Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Rev Sci Instrum ; 89(10): 10G109, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30399958

RESUMO

We apply a cascaded linear model analysis to a micro-channel plate x-ray framing camera. We establish a theoretical expression of the Noise Power Spectrum (NPS) at the detector's output and assess its accuracy by comparing it to the NPS of Monte Carlo simulations of the detector's response to a uniform illumination. We also demonstrate that fitting the NPS of experimental data against a parametric model based on this expression can yield valuable information on the imaging ability of framing cameras, offering an alternative approach to the usual method employed to measure their modulation transfer functions.

2.
Rev Sci Instrum ; 87(11): 11E310, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27910309

RESUMO

Compton radiography provides a means to measure the integrity, ρR and symmetry of the DT fuel in an inertial confinement fusion implosion near peak compression. Upcoming experiments at the National Ignition Facility will use the ARC (Advanced Radiography Capability) laser to drive backlighter sources for Compton radiography experiments and will use the newly commissioned AXIS (ARC X-ray Imaging System) instrument as the detector. AXIS uses a dual-MCP (micro-channel plate) to provide gating and high DQE at the 40-200 keV x-ray range required for Compton radiography, but introduces many effects that contribute to the spatial resolution. Experiments were performed at energies relevant to Compton radiography to begin characterization of the spatial resolution of the AXIS diagnostic.

3.
Rev Sci Instrum ; 85(11): 11D623, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25430199

RESUMO

Recently developed diagnostic techniques at LLNL require recording backlit images of extremely dense imploded plasmas using hard x-rays, and demand the detector to be sensitive to photons with energies higher than 50 keV [R. Tommasini et al., Phys. Phys. Plasmas 18, 056309 (2011); G. N. Hall et al., "AXIS: An instrument for imaging Compton radiographs using ARC on the NIF," Rev. Sci. Instrum. (these proceedings)]. To increase the sensitivity in the high energy region, we propose to use a combination of two MCPs. The first MCP is operated in a low gain regime and works as a thick photocathode, and the second MCP works as a high gain electron multiplier. We tested the concept of this dual MCP configuration and succeeded in obtaining a detective quantum efficiency of 4.5% for 59 keV x-rays, 3 times larger than with a single plate of the thickness typically used in NIF framing cameras.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...