Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Membranes (Basel) ; 13(9)2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37755225

RESUMO

In this study, a microbial fuel cell was integrated into a hydroponic system (MFC-Hyp) using a ceramic membrane as a separator. The MFC-Hyp is a passive system that allows the transport of nutrients from wastewater in the microbial fuel cell (MFC) to water in the hydroponic vessel (Hyp) through a ceramic membrane separator, with no external energy input. The performance of this system was examined using potato-process wastewater as a source of energy and nutrients (K, P, N) and garlic chives (Allium tuberosum) as a hydroponic plant. The results showed that based on dry weight, the leaves of Allium tuberosum grew 142% more in the MFC-Hyp than those of the plant in the Hyp without the MFC, in a 49-day run. The mass fluxes of K, P, and NO3--N from the MFC to the Hyp through the ceramic membrane were 4.18 ± 0.70, 3.78 ± 1.90, and 2.04 ± 0.98 µg s-1m-2, respectively. It was apparent that the diffusion of nutrients from wastewater in the MFC enhanced the plant growth in the Hyp. The MFC-Hyp in the presence of A. tuberosum produced the maximum power density of 130.2 ± 45.4 mW m-2. The findings of this study suggest that the MFC-Hyp system has great potential to be a "carbon-neutral" technology that could be transformed into an important part of a diversified worldwide energy-water-food supply system.

2.
Sci Total Environ ; 817: 153055, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35032528

RESUMO

Microbial energy generation systems, i.e., bioelectrochemical systems (BESs) are promising sustainable technologies that have been used in different fields of application such as biofuel production, biosensor, nutrient recovery, wastewater treatment, and heavy metals removal. However, BESs face great challenges such as large-scale application in real time, low power performance, and suitable materials for their configuration. This review paper aimed to discuss the use of BES systems such as conventional microbial fuel cells (MFCs), as well as plant microbial fuel cell (P-MFC), sediment microbial fuel cell (S-MFC), constructed wetland microbial fuel cell (CW-MFC), osmotic microbial fuel cell (OsMFC), photo-bioelectrochemical fuel cell (PBFC), and MFC-Fenton systems in the zero waste sustainable recovery process. Firstly, the configuration and electrode materials used in BESs as the main sources to improve the performance of these technologies are discussed. Additionally, zero waste recovery process from solid and wastewater feedstock, i.e., energy recovery: electricity generation (from 12 to 26,680 mW m-2) and fuel generation, i.e., H2 (170 ± 2.7 L-1 L-1 d-1) and CH4 (107.6 ± 3.2 mL-1 g-1), nutrient recovery of 100% (PO43-P), and 13-99% (NH4+-N), heavy metal removal/recovery: water recovery, nitrate (100%), sulfate (53-99%), and sulfide recovery/removal (99%), antibiotic, dye removal, and other product recovery are critically analyzed in this review paper. Finally, the perspective and challenges, and future outlook are highlighted. There is no doubt that BES technologies are an economical option for the simultaneous zero waste elimination and energy recovery. However, more research is required to carry out the large-scale application of BES, as well as their commercialization.


Assuntos
Fontes de Energia Bioelétrica , Eletricidade , Eletrodos , Águas Residuárias , Áreas Alagadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...