Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Cells ; 11(23)2022 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-36497079

RESUMO

The activation of the maternal immune system by a prenatal infection is considered a risk factor for developing psychiatric disorders in the offspring. Toxoplasma gondii is one of the pathogenic infections associated with schizophrenia. Recent studies have shown an association between high levels of IgG anti-T. gondii from mothers and their neonates, with a higher risk of developing schizophrenia. The absence of the parasite and the levels of IgGs found in the early stages of life suggest a transplacental transfer of the anti-T. gondii IgG antibodies, which could bind fetal brain structures by molecular mimicry and induce alterations in neurodevelopment. This study aimed to determine the maternal pathogenic antibodies formation that led to behavioral impairment on the progeny of rats immunized with T. gondii. Female rats were immunized prior to gestation with T. gondii lysate (3 times/once per week). The anti-T. gondii IgG levels were determined in the serum of pregestational exposed females' previous mating. After this, locomotor activity, cognitive and social tests were performed. Cortical neurotransmitter levels for dopamine and glutamate were evaluated at 60 PND in the progeny of rats immunized before gestation (Pregestational group). The maternal pathogenic antibodies were evidenced by their binding to fetal brain mimotopes in the Pregestational group and the reactivity of the serum containing anti-T. gondii IgG was tested in control fetal brains (non-immunized). These results showed that the Pregestational group presented impairment in short and long-term memory, hypoactivity and alteration in social behavior, which was also associated with a decrease in cortical glutamate and dopamine levels. We also found the IgG antibodies bound to brain mimotopes in fetuses from females immunized with T. gondii, as well as observing a strong reactivity of the serum females immunized for fetal brain structures of fetuses from unimmunized mothers. Our results suggest that the exposure to T. gondii before gestation produced maternal pathogenic antibodies that can recognize fetal brain mimotopes and lead to neurochemical and behavioral alterations in the offspring.


Assuntos
Dopamina , Toxoplasma , Gravidez , Animais , Feminino , Ratos , Ácido Glutâmico , Imunoglobulina G , Encéfalo
2.
Microorganisms ; 9(3)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801356

RESUMO

Toxoplasmosis is a zoonotic disease caused by the apicomplexa protozoan parasite Toxoplasma gondii. This disease is a health burden, mainly in pregnant women and immunocompromised individuals. Dehydroepiandrosterone (DHEA) has proved to be an important molecule that could drive resistance against a variety of infections, including intracellular parasites such as Plasmodium falciparum and Trypanozoma cruzi, among others. However, to date, the role of DHEA on T. gondii has not been explored. Here, we demonstrated for the first time the toxoplasmicidal effect of DHEA on extracellular tachyzoites. Ultrastructural analysis of treated parasites showed that DHEA alters the cytoskeleton structures, leading to the loss of the organelle structure and organization as well as the loss of the cellular shape. In vitro treatment with DHEA reduces the viability of extracellular tachyzoites and the passive invasion process. Two-dimensional (2D) SDS-PAGE analysis revealed that in the presence of the hormone, a progesterone receptor membrane component (PGRMC) with a cytochrome b5 family heme/steroid binding domain-containing protein was expressed, while the expression of proteins that are essential for motility and virulence was highly reduced. Finally, in vivo DHEA treatment induced a reduction of parasitic load in male, but not in female mice.

3.
Mar Drugs ; 14(4)2016 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-27070627

RESUMO

Toxins that are secreted by cone snails are small peptides that are used to treat several diseases. However, their effects on parasites with human and veterinary significance are unknown. Toxoplasma gondii is an opportunistic parasite that affects approximately 30% of the world's population and can be lethal in immunologically compromised individuals. The conventional treatment for this parasitic infection has remained the same since the 1950s, and its efficacy is limited to the acute phase of infection. These findings have necessitated the search for new drugs that specifically target T. gondii. We examined the effects of the synthetic toxin cal14.1a (s-cal14.1a) from C. californicus on the tachyzoite form of T. gondii. Our results indicate that, at micromolar concentrations, s-cal14.1a lowers viability and inhibits host cell invasion (by 50% and 61%, respectively) on exposure to extracellular parasites. Further, intracellular replication decreased significantly while viability of the host cell was unaffected. Our study is the first report on the antiparasitic activity of a synthetic toxin of C. californicus.


Assuntos
Antiparasitários/farmacologia , Conotoxinas/farmacologia , Caramujo Conus/metabolismo , Parasitos/efeitos dos fármacos , Toxoplasma/efeitos dos fármacos , Animais , Antiparasitários/metabolismo , Linhagem Celular Tumoral , Conotoxinas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...