Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Circ Res ; 133(12): 1022-1039, 2023 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-37961886

RESUMO

BACKGROUND: The endocardium is a crucial signaling center for cardiac valve development and maturation. Genetic analysis has identified several human endocardial genes whose inactivation leads to bicuspid aortic valve formation and calcific aortic valve disease, but knowledge is very limited about the role played in valve development and disease by noncoding endocardial regulatory regions and upstream factors. METHODS: We manipulated Notch signaling in mouse embryonic endocardial cells by short-term and long-term coculture with OP9 stromal cells expressing Notch ligands and inhibition of Notch activity. We examined the transcriptional profile and chromatin accessibility landscape for each condition, integrated transcriptomic, transcription factor occupancy, chromatin accessibility, and proteomic datasets. We generated in vitro and in vivo models with CRISPR-Cas9-edited deletions of various noncoding regulatory elements and validated their regulatory potential. RESULTS: We identified primary and secondary transcriptional responses to Notch ligands in the mouse embryonic endocardium, and a NOTCH-dependent transcriptional signature in valve development and disease. By defining the changes in the chromatin accessibility landscape and integrating with the landscape in developing mouse endocardium and adult human valves, we identify potential noncoding regulatory elements, validated selected candidates, propose interacting cofactors, and define the timeframe of their regulatory activity. Additionally, we found cooperative transcriptional repression with Hippo pathway by inhibiting nuclear Yap (Yes-associated protein) activity in the endocardium during cardiac valve development. CONCLUSIONS: Sequential Notch-dependent transcriptional regulation in the embryonic endocardium involves multiple factors. Notch activates certain noncoding elements through these factors and simultaneously suppresses elements that could hinder cardiac valve development and homeostasis. Biorxviv: https://www.biorxiv.org/content/10.1101/2023.03.23.533882v1.full.


Assuntos
Endocárdio , Via de Sinalização Hippo , Animais , Camundongos , Humanos , Endocárdio/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Cromatina/genética , Cromatina/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Regulação da Expressão Gênica no Desenvolvimento
2.
Sci Adv ; 7(46): eabj5445, 2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767447

RESUMO

Mutations in the G protein­coupled receptor GPR126/ADGRG6 cause human diseases, including defective peripheral nervous system (PNS) myelination. To study GPR126 function, we generated new genetic mice and zebrafish models. Murine Gpr126 is expressed in developing heart endocardium, and global Gpr126 inactivation is embryonically lethal, with mutants having thin-walled ventricles but unaffected heart patterning or maturation. Endocardial-specific Gpr126 deletion does not affect heart development or function, and transgenic endocardial GPR126 expression fails to rescue lethality in Gpr126-null mice. Zebrafish gpr126 mutants display unaffected heart development. Gpr126 is also expressed in placental trophoblast giant cells. Gpr126-null mice with a heterozygous placenta survive but exhibit GPR126-defective PNS phenotype. In contrast, Gpr126-null embryos with homozygous mutant placenta die but are rescued by placental GPR126 expression. Gpr126-deficient placentas display down-regulation of preeclampsia markers Mmp9, Cts7, and Cts8. We propose that the placenta-heart axis accounts for heart abnormalities secondary to placental defects in Gpr126 mutants.

3.
Mol Cell Proteomics ; 18(9): 1782-1795, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31249105

RESUMO

The endocardium is a specialized endothelium that lines the inner surface of the heart. Functional studies in mice and zebrafish have established that the endocardium is a source of instructive signals for the development of cardiac structures, including the heart valves and chambers. Here, we characterized the NOTCH-dependent endocardial secretome by manipulating NOTCH activity in mouse embryonic endocardial cells (MEEC) followed by mass spectrometry-based proteomics. We profiled different sets of soluble factors whose secretion not only responds to NOTCH activation but also shows differential ligand specificity, suggesting that ligand-specific inputs may regulate the expression of secreted proteins involved in different cardiac development processes. NOTCH signaling activation correlates with a transforming growth factor-ß2 (TGFß2)-rich secretome and the delivery of paracrine signals involved in focal adhesion and extracellular matrix (ECM) deposition and remodeling. In contrast, NOTCH inhibition is accompanied by the up-regulation of specific semaphorins that may modulate cell migration. The secretome protein expression data showed a good correlation with gene profiling of RNA expression in embryonic endocardial cells. Additional characterization by in situ hybridization in mouse embryos revealed expression of various NOTCH candidate effector genes (Tgfß2, Loxl2, Ptx3, Timp3, Fbln2, and Dcn) in heart valve endocardium and/or mesenchyme. Validating these results, mice with conditional Dll4 or Jag1 loss-of-function mutations showed gene expression alterations similar to those observed at the protein level in vitro These results provide the first description of the NOTCH-dependent endocardial secretome and validate MEEC as a tool for assaying the endocardial secretome response to a variety of stimuli and the potential use of this system for drug screening.


Assuntos
Endocárdio/embriologia , Endocárdio/metabolismo , Valvas Cardíacas/embriologia , Receptores Notch/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Animais , Benzazepinas/farmacologia , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Células Cultivadas , Endocárdio/citologia , Endocárdio/efeitos dos fármacos , Matriz Extracelular/metabolismo , Regulação Neoplásica da Expressão Gênica , Valvas Cardíacas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Camundongos Mutantes , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética , Reprodutibilidade dos Testes
4.
Proc Natl Acad Sci U S A ; 115(45): E10615-E10624, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30352852

RESUMO

Codevelopment of the lungs and heart underlies key evolutionary innovations in the transition to terrestrial life. Cardiac specializations that support pulmonary circulation, including the atrial septum, are generated by second heart field (SHF) cardiopulmonary progenitors (CPPs). It has been presumed that transcription factors required in the SHF for cardiac septation, e.g., Tbx5, directly drive a cardiac morphogenesis gene-regulatory network. Here, we report instead that TBX5 directly drives Wnt ligands to initiate a bidirectional signaling loop between cardiopulmonary mesoderm and the foregut endoderm for endodermal pulmonary specification and, subsequently, atrial septation. We show that Tbx5 is required for pulmonary specification in mice and amphibians but not for swim bladder development in zebrafish. TBX5 is non-cell-autonomously required for pulmonary endoderm specification by directly driving Wnt2 and Wnt2b expression in cardiopulmonary mesoderm. TBX5 ChIP-sequencing identified cis-regulatory elements at Wnt2 sufficient for endogenous Wnt2 expression domains in vivo and required for Wnt2 expression in precardiac mesoderm in vitro. Tbx5 cooperated with Shh signaling to drive Wnt2b expression for lung morphogenesis. Tbx5 haploinsufficiency in mice, a model of Holt-Oram syndrome, caused a quantitative decrement of mesodermal-to-endodermal Wnt signaling and subsequent endodermal-to-mesodermal Shh signaling required for cardiac morphogenesis. Thus, Tbx5 initiates a mesoderm-endoderm-mesoderm signaling loop in lunged vertebrates that provides a molecular basis for the coevolution of pulmonary and cardiac structures required for terrestrial life.


Assuntos
Evolução Molecular , Coração/embriologia , Pulmão/embriologia , Proteínas com Domínio T/genética , Proteína Wnt2/genética , Animais , Elementos Facilitadores Genéticos , Perfilação da Expressão Gênica , Camundongos , Camundongos Mutantes , Transdução de Sinais , Transcrição Gênica , Peixe-Zebra/embriologia
5.
Development ; 145(13)2018 07 02.
Artigo em Inglês | MEDLINE | ID: mdl-29853617

RESUMO

Signaling interactions between the myocardium and endocardium pattern embryonic cardiac regions, instructing their development to fulfill specific functions in the mature heart. We show that ectopic Bmp2 expression in the mouse chamber myocardium changes the transcriptional signature of adjacent chamber endocardial cells into valve tissue, and enables them to undergo epithelial-mesenchyme transition. This induction is independent of valve myocardium specification and requires high levels of Notch1 activity. Biochemical experiments suggest that Bmp2-mediated Notch1 induction is achieved through transcriptional activation of the Notch ligand Jag1, and physical interaction of Smad1/5 with the intracellular domain of the Notch1 receptor. Thus, widespread myocardial Bmp2 and endocardial Notch signaling drive presumptive ventricular endocardium to differentiate into valve endocardium. Understanding the molecular basis of valve development is instrumental to designing therapeutic strategies for congenital heart valve defects.


Assuntos
Proteína Morfogenética Óssea 2/metabolismo , Embrião de Mamíferos/embriologia , Endocárdio/embriologia , Valvas Cardíacas/embriologia , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteína Morfogenética Óssea 2/genética , Embrião de Mamíferos/citologia , Endocárdio/citologia , Valvas Cardíacas/citologia , Camundongos , Camundongos Transgênicos , Miocárdio/citologia , Miocárdio/metabolismo , Receptores Notch/genética , Proteína Smad1/genética , Proteína Smad1/metabolismo , Proteína Smad5/genética , Proteína Smad5/metabolismo
6.
Cell ; 164(5): 999-1014, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26875865

RESUMO

Transcription factors (TFs) are thought to function with partners to achieve specificity and precise quantitative outputs. In the developing heart, heterotypic TF interactions, such as between the T-box TF TBX5 and the homeodomain TF NKX2-5, have been proposed as a mechanism for human congenital heart defects. We report extensive and complex interdependent genomic occupancy of TBX5, NKX2-5, and the zinc finger TF GATA4 coordinately controlling cardiac gene expression, differentiation, and morphogenesis. Interdependent binding serves not only to co-regulate gene expression but also to prevent TFs from distributing to ectopic loci and activate lineage-inappropriate genes. We define preferential motif arrangements for TBX5 and NKX2-5 cooperative binding sites, supported at the atomic level by their co-crystal structure bound to DNA, revealing a direct interaction between the two factors and induced DNA bending. Complex interdependent binding mechanisms reveal tightly regulated TF genomic distribution and define a combinatorial logic for heterotypic TF regulation of differentiation.


Assuntos
Fator de Transcrição GATA4/metabolismo , Proteínas de Homeodomínio/metabolismo , Miocárdio/citologia , Organogênese , Proteínas com Domínio T/metabolismo , Fatores de Transcrição/metabolismo , Animais , Diferenciação Celular , Cristalografia por Raios X , Embrião de Mamíferos/metabolismo , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Camundongos , Camundongos Transgênicos , Modelos Moleculares , Miocárdio/metabolismo , Regiões Promotoras Genéticas , Domínios e Motivos de Interação entre Proteínas , Proteínas com Domínio T/genética , Fatores de Transcrição/genética
7.
Curr Opin Genet Dev ; 23(5): 556-61, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23993229

RESUMO

In the last few years, cellular reprogramming has emerged as a means to alter cellular identity and generate diverse cell types for disease modeling, drug testing, and potential therapeutic use. Since each cell type is a result of a specific gene expression profile finely regulated by the activity of a repertoire of transcription factors (TFs), reprogramming approaches have, thus far, been relatively inefficient and based largely on the forced expression of selective cell type-specific TFs. TFs function within the confines of chromatin, and the chromatin states can in turn be modulated by TF activity. Therefore, the knowledge of how chromatin remodeling factors alter chromatin structure, control TF activity and gene expression has led to an improved reprogramming efficiency and extended the number of cellular types that can be generated by cellular reprogramming. Here we review recent insights into the role and mechanisms by which chromatin remodeling, histone modifications, and DNA methylation contribute to cellular differentiation and reprogramming.


Assuntos
Diferenciação Celular/genética , Reprogramação Celular/genética , Montagem e Desmontagem da Cromatina/genética , Metilação de DNA/genética , Epigênese Genética , Regulação da Expressão Gênica no Desenvolvimento , Histonas/genética , Histonas/metabolismo , Humanos , Fatores de Transcrição/genética , Transcriptoma
8.
Comput Methods Programs Biomed ; 111(2): 435-46, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23787029

RESUMO

Epithelial to mesenchymal transition (EMT) is a fundamental process during development and disease, including development of the heart valves and tumour metastases. An extended cellular Potts model was implemented to represent the behaviour emerging from autonomous cell morphology, labile adhesion, junctional coupling and cell motility. Computer simulations normally focus on these functional changes independently whereas this model facilitates exploration of the interplay between cell shape changes, adhesion and migration. The simulation model is fitted to an in vitro model of endocardial EMT, and agrees with the finding that Notch signalling increases cell-matrix adhesion in addition to modulating cell-cell adhesion.


Assuntos
Adesão Celular , Transição Epitelial-Mesenquimal , Receptores Notch/metabolismo , Algoritmos , Animais , Caderinas/metabolismo , Comunicação Celular , Movimento Celular , Simulação por Computador , Endocárdio/patologia , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional , Células MCF-7 , Camundongos , Modelos Biológicos , Transdução de Sinais
9.
Birth Defects Res A Clin Mol Teratol ; 91(6): 449-59, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21563298

RESUMO

The Notch pathway is an intercellular signaling mechanism involved in multiple cell-to-cell communication processes that regulate cell fate specification, differentiation, and tissue patterning during embryogenesis and adulthood. Functional studies in the mouse have shown that a Hey-Bmp2 regulatory circuit restricts Bmp2 expression to presumptive valve myocardium (atrioventricular canal and outflow tract). Likewise, a Notch-Hey-Bmp2 axis represses Bmp2 in the endocardium. During cardiac valve formation, endocardial Notch signaling activates the epithelial-mesenchyme transition (EMT) that will give rise to the cardiac valve primordia. During this process, Notch integrates with myocardially derived signals (Bmp2 or Bmp4) to promote, via Snail1/2 activation a complete, invasive EMT in presumptive valve tissue. In humans, mutations in Notch signaling components are associated with several congenital disorders involving malformed valves, aortic arch, and defective chamber septation. Data suggest that the same embryonic Notch-Hey-Bmp2 regulatory axis is active in the adult valve. This review examines the experimental evidence supporting a role for Notch in heart valve development and homeostasis, and how altered Notch signaling may lead to valve disease in the newborn and adult.


Assuntos
Cardiopatias Congênitas/metabolismo , Valvas Cardíacas/embriologia , Receptores Notch/metabolismo , Transdução de Sinais , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica no Desenvolvimento , Cardiopatias Congênitas/genética , Valvas Cardíacas/patologia , Humanos , Receptores Notch/genética
10.
J Clin Invest ; 120(10): 3493-507, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20890042

RESUMO

Cardiac valve formation is crucial for embryonic and adult heart function. Valve malformations constitute the most common congenital cardiac defect, but little is known about the molecular mechanisms regulating valve formation and homeostasis. Here, we show that endocardial Notch1 and myocardial Bmp2 signal integration establish a valve-forming field between 2 chamber developmental domains. Patterning occurs through the activation of endocardial epithelial-to-mesenchymal transition (EMT) exclusively in prospective valve territories. Mice with constitutive endocardial Notch1 activity ectopically express Hey1 and Heyl. They also display an activated mesenchymal gene program in ventricles and a partial (noninvasive) EMT in vitro that becomes invasive upon BMP2 treatment. Snail1, TGF-ß2, or Notch1 inhibition reduces BMP2-induced ventricular transformation and invasion, whereas BMP2 treatment inhibits endothelial Gsk3ß, stabilizing Snail1 and promoting invasiveness. Integration of Notch and Bmp2 signals is consistent with Notch1 signaling being attenuated after myocardial Bmp2 deletion. Notch1 activation in myocardium extends Hey1 expression to nonchamber myocardium, represses Bmp2, and impairs EMT. In contrast, Notch deletion abrogates endocardial Hey gene transcription and extends Bmp2 expression to the ventricular endocardium. This embryonic Notch1-Bmp2-Snail1 relationship may be relevant in adult valve disease, in which decreased NOTCH signaling causes valve mesenchyme cell formation, fibrosis, and calcification.


Assuntos
Proteína Morfogenética Óssea 2/fisiologia , Valvas Cardíacas/embriologia , Mesoderma/metabolismo , Receptor Notch1/fisiologia , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/análise , Proteínas de Ciclo Celular/análise , Células Epiteliais/patologia , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Mesoderma/patologia , Camundongos , Proteínas Repressoras/análise , Transdução de Sinais , Fatores de Transcrição da Família Snail , Fatores de Transcrição/fisiologia , Fator de Crescimento Transformador beta2/fisiologia
11.
Dev Cell ; 12(3): 415-29, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17336907

RESUMO

Ventricular chamber morphogenesis, first manifested by trabeculae formation, is crucial for cardiac function and embryonic viability and depends on cellular interactions between the endocardium and myocardium. We show that ventricular Notch1 activity is highest at presumptive trabecular endocardium. RBPJk and Notch1 mutants show impaired trabeculation and marker expression, attenuated EphrinB2, NRG1, and BMP10 expression and signaling, and decreased myocardial proliferation. Functional and molecular analyses show that Notch inhibition prevents EphrinB2 expression, and that EphrinB2 is a direct Notch target acting upstream of NRG1 in the ventricles. However, BMP10 levels are found to be independent of both EphrinB2 and NRG1 during trabeculation. Accordingly, exogenous BMP10 rescues the myocardial proliferative defect of in vitro-cultured RBPJk mutants, while exogenous NRG1 rescues differentiation in parallel. We suggest that during trabeculation Notch independently regulates cardiomyocyte proliferation and differentiation, two exquisitely balanced processes whose perturbation may result in congenital heart disease.


Assuntos
Diferenciação Celular/fisiologia , Coração/embriologia , Mioblastos Cardíacos/metabolismo , Miócitos Cardíacos/metabolismo , Receptores Notch/metabolismo , Transdução de Sinais/fisiologia , Animais , Proteínas Morfogenéticas Ósseas/genética , Proteínas Morfogenéticas Ósseas/metabolismo , Proliferação de Células , Efrina-B2/genética , Efrina-B2/metabolismo , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Ventrículos do Coração/citologia , Ventrículos do Coração/embriologia , Ventrículos do Coração/metabolismo , Camundongos , Mutação/genética , Mioblastos Cardíacos/citologia , Miócitos Cardíacos/citologia , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neuregulina-1 , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Notch/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...