Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Food Sci ; 76(2): E178-87, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21535757

RESUMO

UNLABELLED: The main objective of this research was to develop an automatic procedure able to classify Rich Lady commercial peaches according to their ripeness stage through multispectral imaging techniques. A classification procedure was applied to the ratio images calculated as red (R, 680 nm) divided by infrared (IR, 800 nm), that is, R/IR images. Four image-based ripeness reference classes (A: unripe to D: overripe) were generated from 380 fruit images (season 1: 2006) by a nonsupervised classification method and evaluated according to reference measurements of the ripeness of the same samples: Magness-Taylor penetrometry firmness, low-mass impact firmness, reflectance at 680 nm (R680, and soluble solids content. The assignment of unknown sample images from those season 1 images (internal validation, n = 380) and of 240 images from the 2nd season (season 2: 2007) to the ripeness reference classes (external validation) was carried out by computing the minimum Euclidean distance (classification distance, C(d)) between each unknown image histogram and the average histogram of each ripeness reference class. For both validation phases, firmness values decreased and R680 increased for increasing alphabetical order of image-based class letter, reflecting the ripening process. Moreover, 70% (season 1) and 80% (season 2) of the samples below bruise susceptibility firmness were classified into class D. PRACTICAL APPLICATION: This work proposes and validates a procedure for assessing peach ripeness through spectral imaging. The control of ripeness in this fruit is crucial for ensuring its quality and the measurement of optimum peach ripeness at harvest and postharvest is a controversial issue, which needs to be balanced between a minimum ripeness, acceptable for the consumer, and a maximum ripeness, to minimize fruit losses during the postharvest process. The proposed method is nondestructive and quick, showing thus, a good perspective for its application in fresh fruit packing lines, either for peach ripeness assessment or for other fruits (providing adequate calibration).


Assuntos
Frutas/crescimento & desenvolvimento , Processamento de Imagem Assistida por Computador/métodos , Prunus/classificação , Prunus/crescimento & desenvolvimento , Calibragem , Espectroscopia de Luz Próxima ao Infravermelho/métodos
2.
Sensors (Basel) ; 10(5): 4968-82, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-22399917

RESUMO

Quality control and monitoring of perishable goods during transportation and delivery services is an increasing concern for producers, suppliers, transport decision makers and consumers. The major challenge is to ensure a continuous 'cold chain' from producer to consumer in order to guaranty prime condition of goods. In this framework, the suitability of ZigBee protocol for monitoring refrigerated transportation has been proposed by several authors. However, up to date there was not any experimental work performed under real conditions. Thus, the main objective of our experiment was to test wireless sensor motes based in the ZigBee/IEEE 802.15.4 protocol during a real shipment. The experiment was conducted in a refrigerated truck traveling through two countries (Spain and France) which means a journey of 1,051 kilometers. The paper illustrates the great potential of this type of motes, providing information about several parameters such as temperature, relative humidity, door openings and truck stops. Psychrometric charts have also been developed for improving the knowledge about water loss and condensation on the product during shipments.


Assuntos
Refrigeração , Meios de Transporte , Verduras/fisiologia , Tecnologia sem Fio , Aceleração , Ar , Análise de Variância , Umidade , Luz , Pressão , Reprodutibilidade dos Testes , Tecnologia sem Fio/instrumentação
3.
Sensors (Basel) ; 9(6): 4728-50, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-22408551

RESUMO

The aim of the present paper is to review the technical and scientific state of the art of wireless sensor technologies and standards for wireless communications in the Agri-Food sector. These technologies are very promising in several fields such as environmental monitoring, precision agriculture, cold chain control or traceability. The paper focuses on WSN (Wireless Sensor Networks) and RFID (Radio Frequency Identification), presenting the different systems available, recent developments and examples of applications, including ZigBee based WSN and passive, semi-passive and active RFID. Future trends of wireless communications in agriculture and food industry are also discussed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...