Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Alzheimers Dis ; 68(1): 219-237, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30714957

RESUMO

Epidemiological studies have suggested a positive correlation between saturated fat intake and the risk for developing Alzheimer's disease (AD). While diets-enriched in the saturated free fatty acid (sFFA) palmitate has been shown to induce cognitive dysfunction and AD-like pathology, polyunsaturated fatty acids (PUFA) such as linoleate have been suggested to protect against AD in mouse models. However, the underlying cellular and molecular mechanisms that mediate the deleterious effects of palmitate or the protective effects of linoleate remain to be characterized. We fed 9-month-old cohorts of triple transgenic AD mice (3xTg-AD) and their-matched controls with a palmitate-enriched/linoleate-deficient diet for three months and determined the impact of the diet on oxidative stress, Bace1 promoter transactivation status, and amyloid-ß (Aß) burden. The palmitate-enriched/linoleate-deficient diet causes a profound increase in oxidative stress burden characterized by significant oxidative damage to lipids, proteins, and nucleic acids concomitant with deficits in the endogenous antioxidant defense capacity in the hippocampi of 3xTg-AD mice. These effects were also associated with increased NF-κB transcriptional activity resulting in NF-κB-mediated transactivation of the Bace1 promoter that culminated in higher BACE1 expression and activity, and Aß production. Our study unveils a novel mechanism by which a diet enriched in the sFFA palmitate and deficient in the PUFA linoleate exacerbates AD-like pathology involving signaling cross-talk between oxidative stress and NF-κB activation as a critical underlying factor in upregulating BACE1 activity and increasing Aß burden.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Hipocampo/metabolismo , Ácido Linoleico/deficiência , Estresse Oxidativo/fisiologia , Palmitatos/administração & dosagem , Doença de Alzheimer/dietoterapia , Doença de Alzheimer/genética , Animais , Antioxidantes/metabolismo , Modelos Animais de Doenças , Alimentos Fortificados , Hipocampo/efeitos dos fármacos , Hipocampo/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Estresse Oxidativo/efeitos dos fármacos , Fragmentos de Peptídeos/metabolismo
2.
Mol Neurobiol ; 56(7): 5256-5269, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30569418

RESUMO

Numerous cross-sectional and longitudinal studies have implicated saturated fat-enriched diets in the etio-pathogenesis of Alzheimer's disease (AD). Emerging evidence shows that saturated fat-enriched diets, such as palmitate-enriched diets, increase amyloid-beta (Aß) production, the histopathological hallmark of AD. However, the molecular mechanisms that underlie the deleterious effects of palmitate-enriched diets in the augmentation of Aß genesis are yet to be characterized. Sterol response element binding protein 1 (SREBP1) is a transcription factor that is modulated by saturated fatty acids, such as palmitate, and consequently regulates the expression of genes that code for proteins involved in almost all facets of lipid metabolism. Herein, we determined the role of changes in SREBP1 expression and transcriptional activity in the palmitate-induced effects on Aß genesis and BACE1 expression, the enzyme that catalyzes the rate-limiting step in Aß biosynthesis. We demonstrate that palmitate-induced SREBP1 activation directly regulates BACE1 expression at the transcriptional level in the mouse hippocampus and mouse Neuro-2a (N2a) neuroblastoma cells. Chromatin immunoprecipitation (ChIP) studies show that palmitate increases the binding of SREBP1 to the Bace1 promoter region in the mouse hippocampus and mouse N2a neuroblastoma cells. Ectopic expression of the dominant negative SREBP1 mutant and knocking-down SREBP1 expression significantly reduced the palmitate-induced increase in BACE1 expression and subsequent Aß genesis in mouse N2a neuroblastoma cells. Our study unveils SREBP1 activation as a novel molecular player in the palmitate-induced upregulation of BACE1 expression and subsequent Aß genesis.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Palmitatos/toxicidade , Proteína de Ligação a Elemento Regulador de Esterol 1/biossíntese , Secretases da Proteína Precursora do Amiloide/genética , Peptídeos beta-Amiloides/genética , Animais , Ácido Aspártico Endopeptidases/genética , Linhagem Celular Tumoral , Dieta Hiperlipídica/efeitos adversos , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteína de Ligação a Elemento Regulador de Esterol 1/genética
3.
BMC Neurosci ; 19(1): 17, 2018 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-29614969

RESUMO

BACKGROUND: Accumulation of the α-synuclein (α-syn) protein is a hallmark of a group of brain disorders collectively known as synucleinopathies. The mechanisms responsible for α-syn accumulation are not well understood. Several studies suggest a link between synucleinopathies and the cholesterol metabolite 27-hydroxycholesterol (27-OHC). 27-OHC is the major cholesterol metabolite in the blood that crosses the blood brain barrier, and its levels can increase following hypercholesterolemia, aging, and oxidative stress, which are all factors for increased synucleinopathy risk. In this study, we determined the extent to which 27-OHC regulates α-syn levels in human dopaminergic neurons, the cell type in which α-syn accumulates in PD, a major synucleinopathy disorder. RESULTS: Our results show that 27-OHC significantly increases the protein levels, not the mRNA expression of α-syn. The effects of 27-OHC appear to be independent of an action through liver X receptors (LXR), its cognate receptors, as the LXR agonist, GW3965, or the LXR antagonist ECHS did not affect α-syn protein or mRNA levels. Furthermore, our data strongly suggest that the 27-OHC-induced increase in α-syn protein levels emanates from inhibition of the proteasomal degradation of this protein and a decrease in the heat shock protein 70 (HSP70). CONCLUSIONS: Identifying 27-OHC as a factor that can increase α-syn levels and the inhibition of the proteasomal function and reduction in HSP70 levels as potential cellular mechanisms involved in regulation of α-syn. This may help in targeting the correct degradation of α-syn as a potential avenue to preclude α-syn accumulation.


Assuntos
Colesterol/sangue , Neurônios Dopaminérgicos/efeitos dos fármacos , Hidroxicolesteróis/farmacologia , Doença de Parkinson/tratamento farmacológico , alfa-Sinucleína/metabolismo , Humanos , RNA/efeitos dos fármacos , RNA Mensageiro/efeitos dos fármacos , alfa-Sinucleína/efeitos dos fármacos
4.
J Neurochem ; 144(6): 761-779, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29315574

RESUMO

The etiology of Alzheimer's disease (AD) is egregiously comprehended, but epidemiological studies have posited that diets rich in the saturated fatty acid palmitic acid (palmitate) are a significant risk factor. The production and accumulation of amyloid beta peptide (Aß) is considered the core pathological molecular event in the pathogenesis of AD. The rate-limiting step in Aß genesis from amyloid-ß precursor protein (AßPP) is catalyzed by the enzyme ß-site amyloid precursor protein cleaving enzyme 1 (BACE1), the expression and enzymatic activity of which is significantly up-regulated in the AD brain. In this study, we determined the molecular mechanisms that potentially underlie the palmitate-induced up-regulation in BACE1 expression and augmented Aß production. We demonstrate that a palmitate-enriched diet and exogenous palmitate treatment evoke an increase in BACE1 expression and activity leading to enhanced Aß genesis in the mouse brain and SH-SY5Y-APPSwe cells, respectively, through the activation of the transcription factor NF-κB. Chromatin immunoprecipitation (ChIP) assays and luciferase reporter assays revealed that palmitate enhances BACE1 expression by increasing the binding of NF-κB in the BACE1 promoter followed by an enhancement in the transactivation of the BACE1 promoter. Elucidation and delineation of upstream molecular events unveiled a critical role of the endoplasmic reticulum stress-associated transcription factor, C/EBP homologous protein (CHOP) in the palmitate-induced NF-κB activation, as CHOP knock-down cells and Chop-/- mice do not exhibit the same degree of NF-κB activation in response to the palmitate challenge. Our study delineates a novel CHOP-NF-κB signaling pathway that mediates palmitate-induced up-regulation of BACE1 expression and Aß genesis.


Assuntos
Doença de Alzheimer/metabolismo , Secretases da Proteína Precursora do Amiloide/metabolismo , Peptídeos beta-Amiloides/biossíntese , Ácido Aspártico Endopeptidases/metabolismo , NF-kappa B/metabolismo , Ácido Palmítico/administração & dosagem , Fator de Transcrição CHOP/metabolismo , Animais , Apoptose , Linhagem Celular Tumoral , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...