Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Physiol ; 13: 836789, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35350699

RESUMO

Membrane protein function is regulated by the lipid bilayer composition. In many cases the changes in function correlate with changes in the lipid intrinsic curvature (c 0), and c 0 is considered a determinant of protein function. Yet, water-soluble amphiphiles that cause either negative or positive changes in curvature have similar effects on membrane protein function, showing that changes in lipid bilayer properties other than c 0 are important-and may be dominant. To further investigate the mechanisms underlying the bilayer regulation of protein function, we examined how maneuvers that alter phospholipid head groups effective "size"-and thereby c 0-alter gramicidin (gA) channel function. Using dioleoylphospholipids and planar bilayers, we varied the head groups' physical volume and the electrostatic repulsion among head groups (and thus their effective size). When 1,2-dioleyol-sn-glycero-3-phosphocholine (DOPC), was replaced by 1,2-dioleyol-sn-glycero-3-phosphoethanolamine (DOPE) with a smaller head group (causing a more negative c 0), the channel lifetime (τ) is decreased. When the pH of the solution bathing a 1,2-dioleyol-sn-glycero-3-phosphoserine (DOPS) bilayer is decreased from 7 to 3 (causing decreased head group repulsion and a more negative c 0), τ is decreased. When some DOPS head groups are replaced by zwitterionic head groups, τ is similarly decreased. These effects do not depend on the sign of the change in surface charge. In DOPE:DOPC (3:1) bilayers, pH changes from 5→9 to 5→0 (both increasing head group electrostatic repulsion, thereby causing a less negative c 0) both increase τ. Nor do the effects depend on the use of planar, hydrocarbon-containing bilayers, as similar changes were observed in hydrocarbon-free lipid vesicles. Altering the interactions among phospholipid head groups may alter also other bilayer properties such as thickness or elastic moduli. Such changes could be excluded using capacitance measurements and single channel measurements on gA channels of different lengths. We conclude that changes gA channel function caused by changes in head group effective size can be predicted from the expected changes in c 0.

2.
Proc Natl Acad Sci U S A ; 108(31): 12717-22, 2011 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-21768343

RESUMO

Linear rate-equilibrium (RE) relations, also known as linear free energy relations, are widely observed in chemical reactions, including protein folding, enzymatic catalysis, and channel gating. Despite the widespread occurrence of linear RE relations, the principles underlying the linear relation between changes in activation and equilibrium energy in macromolecular reactions remain enigmatic. When examining amphiphile regulation of gramicidin channel gating in lipid bilayers, we noted that the gating process could be described by a linear RE relation with a simple geometric interpretation. This description is possible because the gating process provides a well-understood reaction, in which structural changes in a bilayer-embedded model protein can be studied at the single-molecule level. It is thus possible to obtain quantitative information about the energetics of the reaction transition state and its position on a spatial coordinate. It turns out that the linear RE relation for the gramicidin monomer-dimer reaction can be understood, and the quantitative relation between changes in activation energy and equilibrium energy can be interpreted, by considering the effects of amphiphiles on the changes in bilayer elastic energy associated with channel gating. We are not aware that a similar simple mechanistic explanation of a linear RE relation has been provided for a chemical reaction in a macromolecule. RE relations generally should be useful for examining how amphiphile-induced changes in bilayer properties modulate membrane protein folding and function, and for distinguishing between direct (e.g., due to binding) and indirect (bilayer-mediated) effects.


Assuntos
Gramicidina/química , Canais Iônicos/química , Bicamadas Lipídicas/química , Lipídeos de Membrana/química , Algoritmos , Capsaicina/farmacologia , Cromanos/farmacologia , Transferência de Energia/efeitos dos fármacos , Genisteína/farmacologia , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico/efeitos dos fármacos , Cinética , Modelos Químicos , Octoxinol/farmacologia , Fosfatidilcolinas/química , Dobramento de Proteína , Rosiglitazona , Tiazolidinedionas/farmacologia , Troglitazona
3.
Proc Natl Acad Sci U S A ; 107(35): 15427-30, 2010 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-20713738

RESUMO

Many drugs are amphiphiles that, in addition to binding to a particular target protein, adsorb to cell membrane lipid bilayers and alter intrinsic bilayer physical properties (e.g., bilayer thickness, monolayer curvature, and elastic moduli). Such changes can modulate membrane protein function by altering the energetic cost (DeltaG(bilayer)) of bilayer deformations associated with protein conformational changes that involve the protein-bilayer interface. But amphiphiles have complex effects on the physical properties of lipid bilayers, meaning that the net change in DeltaG(bilayer) cannot be predicted from measurements of isolated changes in such properties. Thus, the bilayer contribution to the promiscuous regulation of membrane proteins by drugs and other amphiphiles remains unknown. To overcome this problem, we use gramicidin A (gA) channels as molecular force probes to measure the net effect of amphiphiles, at concentrations often used in biological research, on the bilayer elastic response to a change in the hydrophobic length of an embedded protein. The effects of structurally diverse amphiphiles can be described by changes in a phenomenological bilayer spring constant (H(B)) that summarizes the bilayer elastic properties, as sensed by a bilayer-spanning protein. Amphiphile-induced changes in H(B), measured using gA channels of a particular length, quantitatively predict changes in lifetime for channels of a different length--as well as changes in the inactivation of voltage-dependent sodium channels in living cells. The use of gA channels as molecular force probes provides a tool for quantitative, predictive studies of bilayer-mediated regulation of membrane protein function by amphiphiles.


Assuntos
Membrana Celular/química , Gramicidina/química , Bicamadas Lipídicas/química , Proteínas de Membrana/química , Algoritmos , Capsaicina/análogos & derivados , Capsaicina/química , Capsaicina/farmacologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/fisiologia , Genisteína/química , Genisteína/farmacologia , Gramicidina/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ativação do Canal Iônico/efeitos dos fármacos , Ativação do Canal Iônico/fisiologia , Canais Iônicos/química , Canais Iônicos/fisiologia , Isoflavonas/química , Isoflavonas/farmacologia , Cinética , Potenciais da Membrana/efeitos dos fármacos , Octoxinol/química , Octoxinol/farmacologia , Floretina/química , Floretina/farmacologia , Fosfatidilcolinas/química , Conformação Proteica/efeitos dos fármacos
4.
J R Soc Interface ; 7(44): 373-95, 2010 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-19940001

RESUMO

Membrane protein function is regulated by the host lipid bilayer composition. This regulation may depend on specific chemical interactions between proteins and individual molecules in the bilayer, as well as on non-specific interactions between proteins and the bilayer behaving as a physical entity with collective physical properties (e.g. thickness, intrinsic monolayer curvature or elastic moduli). Studies in physico-chemical model systems have demonstrated that changes in bilayer physical properties can regulate membrane protein function by altering the energetic cost of the bilayer deformation associated with a protein conformational change. This type of regulation is well characterized, and its mechanistic elucidation is an interdisciplinary field bordering on physics, chemistry and biology. Changes in lipid composition that alter bilayer physical properties (including cholesterol, polyunsaturated fatty acids, other lipid metabolites and amphiphiles) regulate a wide range of membrane proteins in a seemingly non-specific manner. The commonality of the changes in protein function suggests an underlying physical mechanism, and recent studies show that at least some of the changes are caused by altered bilayer physical properties. This advance is because of the introduction of new tools for studying lipid bilayer regulation of protein function. The present review provides an introduction to the regulation of membrane protein function by the bilayer physical properties. We further describe the use of gramicidin channels as molecular force probes for studying this mechanism, with a unique ability to discriminate between consequences of changes in monolayer curvature and bilayer elastic moduli.


Assuntos
Gramicidina/metabolismo , Bicamadas Lipídicas/química , Proteínas de Membrana Transportadoras/fisiologia , Interações Hidrofóbicas e Hidrofílicas , Cinética , Fluidez de Membrana , Proteínas de Membrana/química , Proteínas de Membrana/fisiologia , Proteínas de Membrana Transportadoras/química , Modelos Biológicos , Sondas Moleculares/química , Sondas Moleculares/metabolismo , Sondas Moleculares/fisiologia
6.
Angiogenesis ; 10(1): 13-22, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17265099

RESUMO

Endothelial cell (EC) migration is an integral part of angiogenesis and a prerequisite for malignant tumor growth. Recent studies suggest that amphiphilic compounds can regulate migration of bovine aortic ECs by altering the physical properties of the cell membrane lipid bilayers. A number of structurally different amphiphiles thus regulate the migration in quantitative correlation with their effects on the plasma membrane microviscosity. Many amphiphiles that affect EC migration and angiogenesis alter the physical properties of lipid bilayers, suggesting that such a regulatory mechanism may be of general importance. To investigate this notion, we studied the effects of lysophospholipids that inhibit migration of bovine aortic ECs and decrease cell membrane microviscosity, and of other amphiphiles that decrease membrane microviscosity (Triton X-100, octyl-beta-glucoside, arachidonic acid, docosahexaenoic acid, ETYA, capsaicin) on the migration of porcine aortic ECs. We further studied whether the enzyme secretory phospholipase A(2) (sPLA(2)) would affect migration in accordance with the changes in membrane microviscosity induced by its hydrolysis products lysophospholipids and polyunsaturated fatty acids. Arachidonic acid, at low concentrations, promoted cell migration by a mechanism involving metabolic products of this compound. Apart from this effect, all the amphiphiles, as well as sPLA(2), inhibited cell migration. A semi-quantitative analysis found a similar correlation between the effects on migration and on lipid bilayer stiffness measured using gramicidin channels as molecular force transducers. These results suggest that changes in cell membrane physical properties may generally contribute to the effects of amphiphiles on EC migration.


Assuntos
Membrana Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Endoteliais/fisiologia , Fluidez de Membrana/efeitos dos fármacos , Tensoativos/farmacologia , Animais , Ácido Araquidônico/metabolismo , Técnicas de Cultura de Células/métodos , Membrana Celular/fisiologia , Ácidos Docosa-Hexaenoicos/metabolismo , Glucosídeos/química , Glucosídeos/farmacologia , Bicamadas Lipídicas/química , Lisofosfolipídeos/metabolismo , Fluidez de Membrana/fisiologia , Lipídeos de Membrana/metabolismo , Octoxinol/química , Octoxinol/farmacologia , Tensoativos/química , Suínos
7.
Biochemistry ; 45(43): 13118-29, 2006 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-17059229

RESUMO

Docosahexaenoic acid (DHA) and other polyunsaturated fatty acids (PUFAs) promote GABA(A) receptor [(3)H]-muscimol binding, and DHA increases the rate of GABA(A) receptor desensitization. Triton X-100, a structurally unrelated amphiphile, similarly promotes [(3)H]-muscimol binding. The mechanism(s) underlying these effects are poorly understood. DHA and Triton X-100, at concentrations that affect GABA(A) receptor function, increase the elasticity of lipid bilayers measured as decreased bilayer stiffness using gramicidin channels as molecular force transducers. We have previously shown that membrane protein function can be regulated by amphiphile-induced changes in bilayer elasticity and hypothesized that GABA(A) receptors could be similarly regulated. We therefore studied the effects of four structurally unrelated amphiphiles that decrease bilayer stiffness (Triton X-100, octyl-beta-glucoside, capsaicin, and DHA) on GABA(A) receptor function in mammalian cells. All the compounds promoted GABA(A) receptor [(3)H]-muscimol binding by increasing the binding capacity of high-affinity binding without affecting the associated equilibrium binding constant. A semiquantitative analysis found a similar quantitative relation between the effects on bilayer stiffness and [(3)H]-muscimol binding. Membrane cholesterol depletion, which also decreases bilayer stiffness, similarly promoted [(3)H]-muscimol binding. In whole-cell voltage-clamp experiments, Triton X-100, octyl-beta-glucoside, capsaicin, and DHA all reduced the peak amplitude of the GABA-induced currents and increased the rate of receptor desensitization. The effects of the amphiphiles did not correlate with the expected changes in monolayer spontaneous curvature. We conclude that GABA(A) receptor function is regulated by lipid bilayer elasticity. PUFAs may generally regulate membrane protein function by affecting the elasticity of the host lipid bilayer.


Assuntos
Bicamadas Lipídicas/metabolismo , Fluidez de Membrana/fisiologia , Receptores de GABA-A/metabolismo , Animais , Células CHO , Capsaicina/química , Capsaicina/farmacologia , Linhagem Celular , Cricetinae , Cricetulus , Ácidos Docosa-Hexaenoicos/química , Ácidos Docosa-Hexaenoicos/farmacologia , Glucosídeos/química , Glucosídeos/farmacologia , Humanos , Canais Iônicos/efeitos dos fármacos , Bicamadas Lipídicas/química , Fluidez de Membrana/efeitos dos fármacos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Muscimol/metabolismo , Octoxinol/química , Octoxinol/farmacologia , Ligação Proteica/efeitos dos fármacos , Receptores de GABA-A/genética , Receptores de GABA-A/fisiologia , Transfecção , Trítio
8.
J Gen Physiol ; 123(5): 599-621, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15111647

RESUMO

Membrane proteins are regulated by the lipid bilayer composition. Specific lipid-protein interactions rarely are involved, which suggests that the regulation is due to changes in some general bilayer property (or properties). The hydrophobic coupling between a membrane-spanning protein and the surrounding bilayer means that protein conformational changes may be associated with a reversible, local bilayer deformation. Lipid bilayers are elastic bodies, and the energetic cost of the bilayer deformation contributes to the total energetic cost of the protein conformational change. The energetics and kinetics of the protein conformational changes therefore will be regulated by the bilayer elasticity, which is determined by the lipid composition. This hydrophobic coupling mechanism has been studied extensively in gramicidin channels, where the channel-bilayer hydrophobic interactions link a "conformational" change (the monomer<-->dimer transition) to an elastic bilayer deformation. Gramicidin channels thus are regulated by the lipid bilayer elastic properties (thickness, monolayer equilibrium curvature, and compression and bending moduli). To investigate whether this hydrophobic coupling mechanism could be a general mechanism regulating membrane protein function, we examined whether voltage-dependent skeletal-muscle sodium channels, expressed in HEK293 cells, are regulated by bilayer elasticity, as monitored using gramicidin A (gA) channels. Nonphysiological amphiphiles (beta-octyl-glucoside, Genapol X-100, Triton X-100, and reduced Triton X-100) that make lipid bilayers less "stiff", as measured using gA channels, shift the voltage dependence of sodium channel inactivation toward more hyperpolarized potentials. At low amphiphile concentration, the magnitude of the shift is linearly correlated to the change in gA channel lifetime. Cholesterol-depletion, which also reduces bilayer stiffness, causes a similar shift in sodium channel inactivation. These results provide strong support for the notion that bilayer-protein hydrophobic coupling allows the bilayer elastic properties to regulate membrane protein function.


Assuntos
Membrana Celular/fisiologia , Colesterol/metabolismo , Bicamadas Lipídicas/metabolismo , Mecanotransdução Celular/fisiologia , Fluidez de Membrana/fisiologia , Potenciais da Membrana/fisiologia , Canais de Sódio/fisiologia , Adaptação Fisiológica/efeitos dos fármacos , Adaptação Fisiológica/fisiologia , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Elasticidade , Gramicidina/farmacologia , Humanos , Interações Hidrofóbicas e Hidrofílicas , Rim/efeitos dos fármacos , Rim/fisiologia , Mecanotransdução Celular/efeitos dos fármacos , Fluidez de Membrana/efeitos dos fármacos , Potenciais da Membrana/efeitos dos fármacos , Micelas , Canais de Sódio/efeitos dos fármacos , Tensoativos/metabolismo
9.
Eur J Pharmacol ; 435(1): 43-57, 2002 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-11790377

RESUMO

The tricyclic compound (R)-1-(3-(10,11-dihydro-5H-dibenzo[a,d]cyclohepten-5-ylidene)-1-propyl)-3-piperidine carboxylic acid (ReN 1869) is a novel, selective histamine H(1) receptor antagonist. It is orally available, well tolerated, easily enters the central nervous system (CNS) but no adverse effects are seen in mice at 300 mg/kg. ReN 1869 at 0.01-10 mg/kg is antinociceptive in tests of chemical nociception in rodents (formalin, capsaicin, phenyl quinone writhing) but not in thermal tests (hot plate and tail flick). ReN 1869 amplifies the analgesic action of morphine but does not show tolerance after chronic dosing. Moreover, the compound is effective against inflammation of neurogenic origin (antidromic nerve stimulation, histamine-evoked edema) but not in carrageenan-induced inflammation. We suggest that ReN 1869, via H(1) blockade, counteracts the effect of histamine liberated from activated mast cells and inhibits pain transmission in the dorsal spinal cord. ReN 1869 represents a new class of antihistamines with pain-relieving properties that probably is mediated centrally through histamine H(1) receptors but alternative mechanisms of action cannot be excluded.


Assuntos
Antagonistas dos Receptores Histamínicos H1/uso terapêutico , Inflamação Neurogênica/tratamento farmacológico , Dor/tratamento farmacológico , Piperidinas/uso terapêutico , Animais , Benzoquinonas , Sítios de Ligação , Células CHO , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Cálcio/metabolismo , Canais de Cálcio/metabolismo , Capsaicina/farmacologia , Carragenina , Sistema Nervoso Central/efeitos dos fármacos , Cricetinae , Modelos Animais de Doenças , Edema/induzido quimicamente , Edema/tratamento farmacológico , Extravasamento de Materiais Terapêuticos e Diagnósticos , Expressão Gênica/efeitos dos fármacos , Cobaias , Histamina/metabolismo , Técnicas In Vitro , Camundongos , Inflamação Neurogênica/induzido quimicamente , Dor/induzido quimicamente , Medição da Dor , Proteínas Proto-Oncogênicas c-fos/biossíntese , Pirilamina/farmacologia , Ratos , Ratos Sprague-Dawley , Receptores Histamínicos H1/genética , Receptores Histamínicos H1/metabolismo , Especificidade da Espécie , Medula Espinal/efeitos dos fármacos , Medula Espinal/metabolismo , Transfecção , Trítio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...