Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 3951, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38730254

RESUMO

Supramolecular polymer networks contain non-covalent cross-links that enable access to broadly tunable mechanical properties and stimuli-responsive behaviors; the incorporation of multiple unique non-covalent cross-links within such materials further expands their mechanical responses and functionality. To date, however, the design of such materials has been accomplished through discrete combinations of distinct interaction types in series, limiting materials design logic. Here we introduce the concept of leveraging "nested" supramolecular crosslinks, wherein two distinct types of non-covalent interactions exist in parallel, to control bulk material functions. To demonstrate this concept, we use polymer-linked Pd2L4 metal-organic cage (polyMOC) gels that form hollow metal-organic cage junctions through metal-ligand coordination and can exhibit well-defined host-guest binding within their cavity. In these "nested" supramolecular network junctions, the thermodynamics of host-guest interactions within the junctions affect the metal-ligand interactions that form those junctions, ultimately translating to substantial guest-dependent changes in bulk material properties that could not be achieved in traditional supramolecular networks with multiple interactions in series.

2.
ACS Macro Lett ; 13(5): 521-527, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38626454

RESUMO

The incorporation of cleavable comonomers as additives into polymers can imbue traditional polymers with controlled deconstructability and expanded end-of-life options. The efficiency with which cleavable comonomer additives (CCAs) can enable deconstruction is sensitive to their local distribution within a copolymer backbone, which is dictated by their copolymerization behavior. While qualitative heuristics exist that describe deconstructability, comprehensive quantitative connections between CCA loadings, reactivity ratios, polymerization mechanisms, and deconstruction reactions on the deconstruction efficiency of copolymers containing CCAs have not been established. Here, we broadly define these relationships using stochastic simulations characterizing various polymerization mechanisms (e.g., coltrolled/living, free-radical, and reversible ring-opening polymerizations), reactivity ratio pairs (spanning 2 orders of magnitude between 0.01 and 100), CCA loadings (2.5% to 20%), and deconstruction reactions (e.g., comonomer sequence-dependent deconstruction behavior). We show general agreement between simulated and experimentally observed deconstruction fragment sizes from the literature, demonstrating the predictive power of the methods used herein. These results will guide the development of more efficient CCAs and inform the formulation of deconstructable materials.

3.
J Am Chem Soc ; 146(13): 9142-9154, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38526229

RESUMO

The development of cleavable comonomers (CCs) with suitable copolymerization reactivity paves the way for the introduction of backbone deconstructability into polymers. Recent advancements in thionolactone-based CCs, exemplified by dibenzo[c,e]-oxepine-5(7H)-thione (DOT), have opened promising avenues for the selective deconstruction of multiple classes of vinyl polymers, including polyacrylates, polyacrylamides, and polystyrenics. To date, however, no thionolactone CC has been shown to copolymerize with methacrylates to an appreciable extent to enable polymer deconstruction. Here, we overcome this challenge through the design of a new class of benzyl-functionalized thionolactones (bDOTs). Guided by detailed mechanistic analyses, we find that the introduction of radical-stabilizing substituents to bDOTs enables markedly increased and tunable copolymerization reactivity with methyl methacrylate (MMA). Through iterative optimizations of the molecular structure, a specific bDOT, F-p-CF3PhDOT, is discovered to copolymerize efficiently with MMA. High molar mass deconstructable PMMA-based copolymers (dPMMA, Mn > 120 kDa) with low percentages of F-p-CF3PhDOT (1.8 and 3.8 mol%) are prepared using industrially relevant bulk free radical copolymerization conditions. The thermomechanical properties of dPMMA are similar to PMMA; however, the former is shown to degrade into low molar mass fragments (<6.5 kDa) under mild aminolysis conditions. This work presents the first example of a radical ring-opening CC capable of nearly random copolymerization with MMA without the possibility of cross-linking and provides a workflow for the mechanism-guided design of deconstructable copolymers in the future.

4.
J Am Chem Soc ; 145(40): 21879-21885, 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37774389

RESUMO

Metal-organic cages/polyhedra (MOCs) are versatile building blocks for advanced polymer networks with properties that synergistically blend those of traditional polymers and crystalline frameworks. Nevertheless, constructing polyMOCs from very stable Pt(II)-based MOCs or mixtures of metal ions such as Pd(II) and Pt(II) has not, to our knowledge, been demonstrated, nor has exploration of how the dynamics of metal-ligand exchange at the MOC level may impact bulk polyMOC energy dissipation. Here, we introduce a new class of polymer metal-organic cage (polyMOC) gels featuring polyethylene glycol (PEG) strands of varied length cross-linked through bis-pyridyl-carbazole-based M6L12 cubes, where M is Pd(II), Pt(II), or mixtures thereof. We show that, while polyMOCs with varied Pd(II) content have similar network structures, their average stress-relaxation rates are tunable over 3 orders of magnitude due to differences in Pd(II)- and Pt(II)-ligand exchange rates at the M6L12 junction level. Moreover, mixed-metal polyMOCs display relaxation times indicative of intrajunction cooperative interactions, which stands in contrast to previous materials based on point metal junctions. Altogether, this work (1) introduces a novel MOC architecture for polyMOC design, (2) shows that polyMOCs can be prepared from mixtures of Pd(II)/Pt(II), and (3) demonstrates that polyMOCs display unique relaxation behavior due to their multivalent junctions, offering a strategy for controlling polyMOC properties independently of their polymer components.

5.
Chem Sci ; 14(33): 8869-8877, 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37621440

RESUMO

While Si-containing polymers can often be deconstructed using chemical triggers such as fluoride, acids, and bases, they are resistant to cleavage by mild reagents such as biological nucleophiles, thus limiting their end-of-life options and potential environmental degradability. Here, using ring-opening metathesis polymerization, we synthesize terpolymers of (1) a "functional" monomer (e.g., a polyethylene glycol macromonomer or dicyclopentadiene); (2) a monomer containing an electrophilic pentafluorophenyl (PFP) substituent; and (3) a cleavable monomer based on a bifunctional silyl ether . Exposing these polymers to thiols under basic conditions triggers a cascade of nucleophilic aromatic substitution (SNAr) at the PFP groups, which liberates fluoride ions, followed by cleavage of the backbone Si-O bonds, inducing polymer backbone deconstruction. This method is shown to be effective for deconstruction of polyethylene glycol (PEG) based graft terpolymers in organic or aqueous conditions as well as polydicyclopentadiene (pDCPD) thermosets, significantly expanding upon the versatility of bifunctional silyl ether based functional polymers.

8.
Nat Nanotechnol ; 18(2): 184-192, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36702954

RESUMO

Cancer therapies often have narrow therapeutic indexes and involve potentially suboptimal combinations due to the dissimilar physical properties of drug molecules. Nanomedicine platforms could address these challenges, but it remains unclear whether synergistic free-drug ratios translate to nanocarriers and whether nanocarriers with multiple drugs outperform mixtures of single-drug nanocarriers at the same dose. Here we report a bottlebrush prodrug (BPD) platform designed to answer these questions in the context of multiple myeloma therapy. We show that proteasome inhibitor (bortezomib)-based BPD monotherapy slows tumour progression in vivo and that mixtures of bortezomib, pomalidomide and dexamethasone BPDs exhibit in vitro synergistic, additive or antagonistic patterns distinct from their corresponding free-drug counterparts. BPDs carrying a statistical mixture of three drugs in a synergistic ratio outperform the free-drug combination at the same ratio as well as a mixture of single-drug BPDs in the same ratio. Our results address unanswered questions in the field of nanomedicine, offering design principles for combination nanomedicines and strategies for improving current front-line monotherapies and combination therapies for multiple myeloma.


Assuntos
Mieloma Múltiplo , Pró-Fármacos , Humanos , Mieloma Múltiplo/tratamento farmacológico , Mieloma Múltiplo/patologia , Bortezomib/uso terapêutico , Dexametasona/uso terapêutico , Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia
9.
J Am Chem Soc ; 144(29): 13276-13284, 2022 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-35819842

RESUMO

The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.


Assuntos
Metais , Polímeros , Catálise , Géis , Ligantes
10.
J Am Chem Soc ; 144(28): 12979-12988, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35763561

RESUMO

Many common polymers, especially vinyl polymers, are inherently difficult to chemically recycle and are environmentally persistent. The introduction of low levels of cleavable comonomer additives into existing vinyl polymerization processes could facilitate the production of chemically deconstructable and recyclable variants with otherwise equivalent properties. Here, we report thionolactones that serve as cleavable comonomer additives for the chemical deconstruction and recycling of vinyl polymers prepared through free radical polymerization, using polystyrene (PS) as a model example. Deconstructable PS of different molar masses (∼20-300 kDa) bearing varied amounts of statistically incorporated thioester backbone linkages (2.5-55 mol %) can be selectively depolymerized to yield well-defined thiol-terminated fragments (<10 kDa) that are suitable for oxidative repolymerization to generate recycled PS of nearly identical molar mass to the parent material, in good yields (80-95%). A theoretical model is provided to generalize this molar mass memory effect. Notably, the thermomechanical properties of deconstructable PS bearing 2.5 mol % of cleavable linkages and its recycled product are similar to those of virgin PS. The additives were also shown to be effective for deconstruction of a cross-linked styrenic copolymer and deconstruction and repolymerization of a polyacrylate, suggesting that cleavable comonomers may offer a general approach toward circularity of many vinyl (co)polymers.


Assuntos
Poliestirenos , Compostos de Vinila , Peso Molecular , Polimerização , Polímeros/química , Compostos de Vinila/química
11.
Chem Rev ; 121(8): 5042-5092, 2021 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-33792299

RESUMO

Polymer networks are complex systems consisting of molecular components. Whereas the properties of the individual components are typically well understood by most chemists, translating that chemical insight into polymer networks themselves is limited by the statistical and poorly defined nature of network structures. As a result, it is challenging, if not currently impossible, to extrapolate from the molecular behavior of components to the full range of performance and properties of the entire polymer network. Polymer networks therefore present an unrealized, important, and interdisciplinary opportunity to exert molecular-level, chemical control on material macroscopic properties. A barrier to sophisticated molecular approaches to polymer networks is that the techniques for characterizing the molecular structure of networks are often unfamiliar to many scientists. Here, we present a critical overview of the current characterization techniques available to understand the relation between the molecular properties and the resulting performance and behavior of polymer networks, in the absence of added fillers. We highlight the methods available to characterize the chemistry and molecular-level properties of individual polymer strands and junctions, the gelation process by which strands form networks, the structure of the resulting network, and the dynamics and mechanics of the final material. The purpose is not to serve as a detailed manual for conducting these measurements but rather to unify the underlying principles, point out remaining challenges, and provide a concise overview by which chemists can plan characterization strategies that suit their research objectives. Because polymer networks cannot often be sufficiently characterized with a single method, strategic combinations of multiple techniques are typically required for their molecular characterization.

12.
J Chem Inf Model ; 61(3): 1150-1163, 2021 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-33615783

RESUMO

Polymers are stochastic materials that represent distributions of different molecules. In general, to quantify the distribution, polymer researchers rely on a series of chemical characterizations that each reveal partial information on the distribution. However, in practice, the exact set of characterizations that are carried out, as well as how the characterization data are aggregated and reported, is largely nonstandard across the polymer community. This scenario makes polymer characterization data highly disparate, thereby significantly slowing down the development of polymer informatics. In this work, a proposal on how structural characterization data can be organized is presented. To ensure that the system can apply universally across the entire polymer community, the proposed schema, PolyDAT, is designed to embody a minimal congruent set of vocabulary that is common across different domains. Unlike most chemical schemas, where only data pertinent to the species of interest are included, PolyDAT deploys a multi-species reaction network construct, in which every characterization on relevant species is collected to provide the most comprehensive profile on the polymer species of interest. Instead of maintaining a comprehensive list of available characterization techniques, PolyDAT provides a handful of generic templates, which align closely with experimental conventions and cover most types of common characterization techniques. This allows flexibility for the development and inclusion of new measurement methods. By providing a standard format to digitalize data, PolyDAT serves not only as an extension to BigSMILES that provides the necessary quantitative information but also as a standard channel for researchers to share polymer characterization data.


Assuntos
Polímeros
13.
Nature ; 585(7823): E4, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32814908

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

14.
Nature ; 583(7817): 542-547, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32699399

RESUMO

Thermosets-polymeric materials that adopt a permanent shape upon curing-have a key role in the modern plastics and rubber industries, comprising about 20 per cent of polymeric materials manufactured today, with a worldwide annual production of about 65 million tons1,2. The high density of crosslinks that gives thermosets their useful properties (for example, chemical and thermal resistance and tensile strength) comes at the expense of degradability and recyclability. Here, using the industrial thermoset polydicyclopentadiene as a model system, we show that when a small number of cleavable bonds are selectively installed within the strands of thermosets using a comonomer additive in otherwise traditional curing workflows, the resulting materials can display the same mechanical properties as the native material, but they can undergo triggered, mild degradation to yield soluble, recyclable products of controlled size and functionality. By contrast, installation of cleavable crosslinks, even at much higher loadings, does not produce degradable materials. These findings reveal that optimization of the cleavable bond location can be used as a design principle to achieve controlled thermoset degradation. Moreover, we introduce a class of recyclable thermosets poised for rapid deployment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...