Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proteins ; 89(3): 311-321, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33068039

RESUMO

Machupo virus, known to cause hemorrhagic fevers, enters human cells via binding with its envelope glycoprotein to transferrin receptor 1 (TfR). Similarly, the receptor interactions have been explored in biotechnological applications as a molecular system to ferry therapeutics across the cellular membranes and through the impenetrable blood-brain barrier that effectively blocks any such delivery into the brain. Study of the experimental structure of Machupo virus glycoprotein 1 (MGP1) in complex with TfR and glycoprotein sequence homology has identified some residues at the interface that influence binding. There are, however, no studies that have attempted to optimize the binding potential between MGP1 and TfR. In pursuits for finding therapeutic solutions for the New World arenaviruses, and to gain a greater understanding of MGP1 interactions with TfR, it is crucial to understand the structure-sequence relationship driving the interface formation. By displaying MGP1 on yeast surface we have examined the contributions of individual residues to the binding of solubilized ectodomain of TfR. We identified MGP1 binding hot spot residues, assessed the importance of posttranslational N-glycan modifications, and used a selection with random mutagenesis for affinity maturation. We show that the optimized MGP1 variants can bind more strongly to TfR than the native MGP1, and there is an MGP1 sequence that retains binding in the absence of glycosylation, but with the addition of further amino acid substitutions. The engineered variants can be used to probe cellular internalization or the blood-brain barrier crossing to achieve greater understanding of TfR mediated internalization.


Assuntos
Antígenos CD , Arenavirus do Novo Mundo/química , Receptores da Transferrina , Proteínas do Envelope Viral , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/metabolismo , Humanos , Modelos Moleculares , Mutação , Engenharia de Proteínas , Receptores da Transferrina/química , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/metabolismo
2.
PeerJ ; 8: e8904, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32377446

RESUMO

The sesquiterpene ß-caryophyllene is an ubiquitous component in many plants that has commercially been used as an aroma in cosmetics and perfumes. Recent studies have shown its potential use as a therapeutic agent and biofuel. Currently, ß-caryophyllene is isolated from large amounts of plant material. Molecular farming based on the Nicotiana benthamiana transient expression system may be used for a more sustainable production of ß-caryophyllene. In this study, a full-length cDNA of a new duplicated ß-caryophyllene synthase from Artemisia annua (AaCPS1) was isolated and functionally characterized. In order to produce ß-caryophyllene in vitro, the AaCPS1 was cloned into a plant viral-based vector pEAQ-HT. Subsequently, the plasmid was transferred into the Agrobacterium and agroinfiltrated into N. benthamiana leaves. The AaCPS1 expression was analyzed by quantitative PCR at different time points after agroinfiltration. The highest level of transcripts was observed at 9 days post infiltration (dpi). The AaCPS1 protein was extracted from the leaves at 9 dpi and purified by cobalt-nitrilotriacetate (Co-NTA) affinity chromatography using histidine tag with a yield of 89 mg kg-1 fresh weight of leaves. The protein expression of AaCPS1 was also confirmed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analyses. AaCPS1 protein uses farnesyl diphosphate (FPP) as a substrate to produce ß-caryophyllene. Product identification and determination of the activity of purified AaCPS1 were done by gas chromatography-mass spectrometry (GC-MS). GC-MS results revealed that the AaCPS1 produced maximum 26.5 ± 1 mg of ß-caryophyllene per kilogram fresh weight of leaves after assaying with FPP for 6 h. Using AaCPS1 as a proof of concept, we demonstrate that N. benthamiana can be considered as an expression system for production of plant proteins that catalyze the formation of valuable chemicals for industrial applications.

5.
Plant Mol Biol ; 88(4-5): 325-40, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25616735

RESUMO

The artemisinic aldehyde double bond reductase (DBR2) plays an important role in the biosynthesis of the antimalarial artemisinin in Artemisia annua. Artemisinic aldehyde is reduced into dihydroartemisinic aldehyde by DBR2. Artemisinic aldehyde can also be oxidized by amorpha-4,11-diene 12-hydroxylase and/or aldehyde dehydrogenase 1 to artemisinic acid, a precursor of arteannuin B. In order to better understand the effects of DBR2 expression on the flow of artemisinic aldehyde into either artemisinin or arteannuin B, we determined the content of dihydroartemisinic aldehyde, artemisinin, artemisinic acid and arteannuin B content of A. annua varieties sorted into two chemotypes. The high artemisinin producers (HAPs), which includes the '2/39', 'Chongqing' and 'Anamed' varieties, produce more artemisinin than arteannuin B; the low artemisinin producers (LAPs), which include the 'Meise', 'Iran#8', 'Iran#14', 'Iran#24' and 'Iran#47' varieties, produce more arteannuin B than artemisinin. Quantitative PCR showed that the relative expression of DBR2 was significantly higher in the HAP varieties. We cloned and sequenced the promoter of the DBR2 gene from varieties of both the LAP and the HAP groups. There were deletions/insertions in the region just upstream of the ATG start codon in the LAP varities, which might be the reason for the different promoter activities of the HAP and LAP varieties. The relevance of promoter variation, DBR2 expression levels and artemisinin biosynthesis capabilities are discussed and a selection method for HAP varieties with a DNA marker is suggested. Furthermore, putative cis-acting regulatory elements differ between the HAP and LAP varieties.


Assuntos
Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Oxirredutases/genética , Oxirredutases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antimaláricos/metabolismo , Artemisia annua/classificação , Sequência de Bases , DNA de Plantas/genética , Genes de Plantas , Plantas Medicinais/classificação , Plantas Medicinais/genética , Plantas Medicinais/metabolismo , Reação em Cadeia da Polimerase , Regiões Promotoras Genéticas , Especificidade da Espécie
6.
Phytochemistry ; 102: 89-96, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24629804

RESUMO

The effective anti-malarial medicine artemisinin is costly because of the low content in Artemisia annua. Genetic engineering of A. annua is one of the most promising approaches to improve the yield of artemisinin. In this work, the transcription factor AaWRKY1, which is thought to be involved in the regulation of artemisinin biosynthesis, was cloned from A. annua var. Chongqing and overexpressed using the CaMV35S promoter or the trichome-specific CYP71AV1 promoter in stably transformed A. annua plants. The transcript level of AaWRKY1 was increased more than one hundred times under the CaMV35S promoter and about 40 times under the CYP71AV1 promoter. The overexpressed AaWRKY1 activated the transcription of CYP71AV1 and moreover the trichome-specific overexpression of AaWRKY1 improved the transcription of CYP71AV1 much more effectively than the constitutive overexpression of AaWRKY1, i.e. up to 33 times as compared to the wild-type plant. However the transcription levels of FDS, ADS, and DBR2 did not change significantly in transgenic plants. The significantly up-regulated CYP71AV1 promoted artemisinin biosynthesis, i.e. up to about 1.8 times as compared to the wild-type plant. It is demonstrated that trichome-specific overexpression of AaWRKY1 can significantly activate the transcription of CYP71AV1 and the up-regulated CYP71AV1 promotes artemisinin biosynthesis.


Assuntos
Alquil e Aril Transferases/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Fatores de Transcrição/genética , Alquil e Aril Transferases/metabolismo , Sequência de Aminoácidos , Artemisia annua/genética , Perfilação da Expressão Gênica , Estrutura Molecular , Reação em Cadeia da Polimerase , Alinhamento de Sequência , Fatores de Transcrição/metabolismo
7.
J Plant Physiol ; 171(2): 85-96, 2014 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-24331423

RESUMO

Artemisinin, an antimalarial endoperoxide sesquiterpene, is synthesized in glandular trichomes of Artemisia annua L. A number of other enzymes of terpene metabolism utilize intermediates of artemisinin biosynthesis, such as isopentenyl and farnesyl diphosphate, and may thereby influence the yield of artemisinin. In order to study the expression of such enzymes, we have cloned the promoter regions of some enzymes and fused them to ß-glucuronidase (GUS). In this study, we have investigated the expression of the monoterpene synthase linalool synthase (LIS) using transgenic A. annua carrying the GUS gene under the control of the LIS promoter. The 652bp promoter region was cloned by the genome walker method. A number of putative cis-acting elements were predicted indicating that the LIS is driven by a complex regulation mechanism. Transgenic plants carrying the promoter-GUS fusion showed specific expression of GUS in T-shaped trichomes (TSTs) but not in glandular secretory trichomes, which is the site for artemisinin biosynthesis. GUS expression was observed at late stage of flower development in styles of florets and in TSTs and guard cells of basal bracts. GUS expression after wounding showed that LIS is involved in plant responsiveness to wounding. Furthermore, the LIS promoter responded to methyl jasmonate (MeJA). These results indicate that the promoter carries a number of cis-acting regulatory elements involved in the tissue-specific expression of LIS and in the response of the plant to wounding and MeJA treatment. Southern blot analysis indicated that the GUS gene was integrated in the A. annua genome as single or multi copies in different transgenic lines. Promoter activity analysis by qPCR showed that both the wild-type and the recombinant promoter are active in the aerial parts of the plant while only the recombinant promoter was active in roots. Due to the expression in TSTs but not in glandular trichomes, it may be concluded that LIS expression will most likely have little or no effect on artemisinin production.


Assuntos
Artemisia annua/enzimologia , Hidroliases/genética , Acetatos , Artemisia annua/genética , Sequência de Bases , Ciclopentanos , Glucuronidase/genética , Hidroliases/metabolismo , Dados de Sequência Molecular , Oxilipinas , Plantas Geneticamente Modificadas/metabolismo , Reação em Cadeia da Polimerase , Análise de Sequência de DNA , Transformação Genética
8.
PLoS One ; 8(11): e80643, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24278301

RESUMO

In order to better understand the influence of sesquiterpene synthases on artemisinin yield in Artemisia annua, the expression of some sesquiterpene synthases has been studied using transgenic plants expressing promoter-GUS fusions. The cloned promoter sequences were 923, 1182 and 1510 bp for ß-caryophyllene (CPS), epi-cedrol (ECS) and ß-farnesene (FS) synthase, respectively. Prediction of cis-acting regulatory elements showed that the promoters are involved in complex regulation of expression. Transgenic A. annua plants carrying promoter-GUS fusions were studied to elucidate the expression pattern of the three sesquiterpene synthases and compared to the previously studied promoter of amorpha-4,11-diene synthase (ADS), a key enzyme of artemisinin biosynthesis. The CPS and ECS promoters were active in T-shaped trichomes of leaves and stems, basal bracts of flower buds and also in some florets cells but not in glandular secretory trichome while FS promoter activity was only observed in leaf cells and trichomes of transgenic shoots. ADS, CPS, ECS and FS transcripts were induced by wounding in a time depended manner. The four sesquiterpene synthases may be involved in responsiveness of A. annua to herbivory. Methyl jasmonate treatment triggered activation of the promoters of all four sesquiterpene synthases in a time depended manner. Southern blot result showed that the GUS gene was inserted into genomic DNA of transgenic lines as a single copy or two copies. The relative amounts of CPS and ECS as well as germacrene A synthase (GAS) transcripts are much lower than that of ADS transcript. Consequently, down-regulation of the expression of the CPS, ECS or GAS gene may not improve artemsinin yield. However, blocking the expression of FS may have effects on artemisinin production.


Assuntos
Alquil e Aril Transferases/genética , Artemisia annua/enzimologia , Artemisia annua/genética , Regulação da Expressão Gênica de Plantas , Glucuronidase/genética , Regiões Promotoras Genéticas , Sesquiterpenos/metabolismo , Acetatos/farmacologia , Alquil e Aril Transferases/metabolismo , Artemisia annua/efeitos dos fármacos , Sequência de Bases , Southern Blotting , Ciclopentanos/farmacologia , Flores/efeitos dos fármacos , Flores/genética , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Glucuronidase/metabolismo , Oxilipinas/farmacologia , Folhas de Planta/efeitos dos fármacos , Folhas de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Fosfatos de Poli-Isoprenil/química , Fosfatos de Poli-Isoprenil/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes de Fusão/genética , Sesquiterpenos/química , Especificidade por Substrato/efeitos dos fármacos
9.
Plant Mol Biol ; 81(1-2): 119-38, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23161198

RESUMO

Artemisinin derivatives are effective anti-malarial drugs. In order to design transgenic plants of Artemisia annua with enhanced biosynthesis of artemisinin, we are studying the promoters of genes encoding enzymes involved in artemisinin biosynthesis. A 1,151 bp promoter region of the cyp71av1 gene, encoding amorpha-4,11-diene 12-hydroxylase, was cloned. Alignment of the cloned promoter and other cyp71av1 promoter sequences indicated that the cyp71av1 promoter may be different in different A. annua varieties. Comparison to the promoter of amorpha-4,11-diene synthase gene showed a number of putative cis-acting regulatory elements in common, suggesting a co-regulation of the two genes. The cyp71av1 promoter sequence was fused to the ß-glucuronidase (GUS) reporter gene and two varieties of A. annua and Nicotiana tabacum were transformed. In A. annua, GUS expression was exclusively localized to glandular secretory trichomes (GSTs) of leaf primordia and top expanded leaves. In older leaves, there is a shift of expression to T-shaped trichomes (TSTs). Only TSTs showed GUS staining in lower leaves and there is no GUS staining in old leaves. GUS expression in flower buds was specifically localized to GSTs. The recombinant promoter carries the cis-acting regulatory elements required for GST-specific expression. The cyp71av1 promoter shows activity in young tissues. The recombinant promoter was up to 200 times more active than the wild type promoter. GUS expression in transgenic N. tabacum was localized to glandular heads. Transcript levels were up-regulated by MeJA. Wound responsiveness experiment showed that the cyp71av1 promoter does not appear to play any role in the response of A. annua to mechanical stress.


Assuntos
Artemisia annua/genética , Artemisia annua/metabolismo , Artemisininas/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Antimaláricos/metabolismo , Sequência de Bases , DNA de Plantas/genética , Expressão Gênica , Genes de Plantas , Glucuronidase/genética , Glucuronidase/metabolismo , Redes e Vias Metabólicas , Microscopia Eletrônica de Varredura , Dados de Sequência Molecular , Folhas de Planta/metabolismo , Folhas de Planta/ultraestrutura , Plantas Geneticamente Modificadas , Sesquiterpenos Policíclicos , Regiões Promotoras Genéticas , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência do Ácido Nucleico , Sesquiterpenos/metabolismo , Nicotiana/genética , Nicotiana/metabolismo
10.
Plant Cell Rep ; 31(7): 1309-19, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22565787

RESUMO

UNLABELLED: Artemisia annua L. produces a number of sesquiterpene synthases, which catalyze the conversion of farnesyl diphosphate to various sesquiterpenes. The cDNAs encoding amorpha-4,11-diene synthase (ADS), a key enzyme in the artemisinin biosynthesis, and epi-cedrol synthase (ECS), a complex sesquiterpene cyclization synthase, were cloned into Cowpea mosaic virus-based viral vector (pEAQ-HT) with Kozak consensus motif and C-terminal histidine tag. The plasmids were transformed into Agrobacterium LBA4404 and, agroinfiltrated into Nicotiana benthamiana leaves along with vector (pJL3:p19) containing Tomato bushy stunt virus post-transcriptional gene silencing suppressor. Quantitative PCR was carried out to measure the transcript levels at 0, 3, 6, 9, 12 and 15 days post-infiltration (dpi). The highest relative expression was observed at 9 dpi for both genes. Transiently expressed recombinant proteins of ADS and ECS were confirmed by SDS-PAGE and western blot. Recombinant proteins were extracted from 9 dpi leaves and purified by immobilized metal ion affinity chromatography using histidine tag, which produced yields of 90 and 96 mg kg⁻¹ fresh weight of leaves for ADS and ECS, respectively. Activities of the purified enzymes were assayed using gas chromatography-mass spectrometry for product identification and quantification using valencene as internal standard. The recombinant ADS and ECS converted farnesyl diphosphate into amorpha-4,11-diene (97 %) and epi-cedrol (96 %) as the major products, respectively. The purified enzymes exhibited the specific activity of 0.002 and 0.01 µmol min⁻¹ mg⁻¹ protein for ADS and ECS, respectively. The apparent k(cat) values were 2.1 × 10⁻³ s⁻¹ and 11 × 10⁻³ s⁻¹ for ADS and ECS, respectively. KEY MESSAGE: Agroinfiltration of leaves of Nicotiana bentamiana can be used to produce recombinant biosynthetic enzymes as exemplified by two sesquiterpene synthases from Artemisia annua in relatively high yields.


Assuntos
Alquil e Aril Transferases/biossíntese , Artemisia annua/enzimologia , Nicotiana/metabolismo , Proteínas de Plantas/biossíntese , Agrobacterium , Alquil e Aril Transferases/genética , Artemisia annua/genética , Clonagem Molecular , Vetores Genéticos , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Sesquiterpenos/metabolismo , Nicotiana/genética
11.
PLoS One ; 7(3): e33010, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22442675

RESUMO

The influenza A virus is of global concern for the poultry industry, especially the H5 and H7 subtypes as they have the potential to become highly pathogenic for poultry. In this study, the hemagglutinin (HA) of a low pathogenic avian influenza virus of the H7N7 subtype isolated from a Swedish mallard Anas platyrhynchos was sequenced, characterized and transiently expressed in Nicotiana benthamiana. Recently, plant expression systems have gained interest as an alternative for the production of vaccine antigens. To examine the possibility of expressing the HA protein in N. benthamiana, a cDNA fragment encoding the HA gene was synthesized de novo, modified with a Kozak sequence, a PR1a signal peptide, a C-terminal hexahistidine (6×His) tag, and an endoplasmic retention signal (SEKDEL). The construct was cloned into a Cowpea mosaic virus (CPMV)-based vector (pEAQ-HT) and the resulting pEAQ-HT-HA plasmid, along with a vector (pJL3:p19) containing the viral gene-silencing suppressor p19 from Tomato bushy stunt virus, was agro-infiltrated into N. benthamiana. The highest gene expression of recombinant plant-produced, uncleaved HA (rHA0), as measured by quantitative real-time PCR was detected at 6 days post infiltration (dpi). Guided by the gene expression profile, rHA0 protein was extracted at 6 dpi and subsequently purified utilizing the 6×His tag and immobilized metal ion adsorption chromatography. The yield was 0.2 g purified protein per kg fresh weight of leaves. Further molecular characterizations showed that the purified rHA0 protein was N-glycosylated and its identity confirmed by liquid chromatography-tandem mass spectrometry. In addition, the purified rHA0 exhibited hemagglutination and hemagglutination inhibition activity indicating that the rHA0 shares structural and functional properties with native HA protein of H7 influenza virus. Our results indicate that rHA0 maintained its native antigenicity and specificity, providing a good source of vaccine antigen to induce immune response in poultry species.


Assuntos
Antígenos Virais/biossíntese , Glicoproteínas de Hemaglutininação de Vírus da Influenza/biossíntese , Vírus da Influenza A Subtipo H7N7 , Plantas Geneticamente Modificadas/metabolismo , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Influenza Aviária/genética , Influenza Aviária/imunologia , Influenza Aviária/prevenção & controle , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/imunologia , Aves Domésticas/imunologia , Doenças das Aves Domésticas/genética , Doenças das Aves Domésticas/imunologia , Doenças das Aves Domésticas/prevenção & controle , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Nicotiana
12.
Plant Sci ; 183: 9-13, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22195571

RESUMO

The aim of this project was to evaluate the effect of fixation on plant material prior to Laser Microdissection and Pressure Catapulting (LMPC) and to identify an appropriate method for preserving good RNA quality after cell isolation. Therefore, flower buds from Artemisia annua L. were exposed to either the fixative formaldehyde or a non-fixative buffer prior to cell isolation by LMPC. Proteinase K was used after cell isolation from fixed plant tissue, in an attempt to improve the RNA yield. The ability to detect gene expression using real-time quantitative PCR with or without previous amplification of RNA from cells isolated by LMPC was also evaluated. Conclusively, we describe a new technique, without fixation, enabling complete isolation of intact glandular secretory trichomes and specific single trichome cells of A. annua. This method is based on LMPC and preserves good RNA quality for subsequent RNA expression studies of both whole trichomes, apical and sub-apical cells from trichomes of A. annua. Using this method, expression of genes of terpene metabolism was studied by real-time quantitative PCR. Expression of genes involved in artemisinin biosynthesis was observed in both apical and sub-apical cells.


Assuntos
Artemisia annua/genética , Expressão Gênica , Microdissecção e Captura a Laser/métodos , Proteínas de Plantas/genética , Terpenos/metabolismo , Fixação de Tecidos , Artemisia annua/citologia , Artemisia annua/metabolismo , Artemisininas/metabolismo , Fixadores , Formaldeído , Perfilação da Expressão Gênica , Componentes Aéreos da Planta/citologia , Componentes Aéreos da Planta/genética , Componentes Aéreos da Planta/metabolismo , Proteínas de Plantas/metabolismo , RNA de Plantas , Reação em Cadeia da Polimerase em Tempo Real
13.
BMC Plant Biol ; 11: 45, 2011 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-21388533

RESUMO

BACKGROUND: Recently, Artemisia annua L. (annual or sweet wormwood) has received increasing attention due to the fact that the plant produces the sesquiterpenoid endoperoxide artemisinin, which today is widely used for treatment of malaria. The plant produces relatively small amounts of artemisinin and a worldwide shortage of the drug has led to intense research in order to increase the yield of artemisinin. In order to improve our understanding of terpene metabolism in the plant and to evaluate the competition for precursors, which may influence the yield of artemisinin, we have used qPCR to estimate the expression of 14 genes of terpene metabolism in different tissues. RESULTS: The four genes of the artemisinin biosynthetic pathway (amorpha-4,11-diene synthase, amorphadiene-12-hydroxylase, artemisinic aldehyde ∆11(13) reductase and aldehyde dehydrogenase 1) showed remarkably higher expression (between ~40- to ~500-fold) in flower buds and young leaves compared to other tissues (old leaves, stems, roots, hairy root cultures). Further, dihydroartemisinic aldehyde reductase showed a very high expression only in hairy root cultures. Germacrene A and caryophyllene synthase were mostly expressed in young leaves and flower buds while epi-cedrol synthase was highly expressed in old leaves. 3-Hydroxy-3-methyl-glutaryl coenzyme A reductase exhibited lower expression in old leaves compared to other tissues. Farnesyldiphosphate synthase, squalene synthase, and 1-deoxy-D-xylulose-5-phosphate reductoisomerase showed only modest variation in expression in the different tissues, while expression of 1-deoxy-D-xylulose-5-phosphate synthase was 7-8-fold higher in flower buds and young leaves compared to old leaves. CONCLUSIONS: Four genes of artemisinin biosynthesis were highly expressed in flower buds and young leaves (tissues showing a high density of glandular trichomes). The expression of dihydroartemisinic aldehyde reductase has been suggested to have a negative effect on artemisinin production through reduction of dihydroartemisinic aldehyde to dihydroartemisinic alcohol. However, our results show that this enzyme is expressed only at low levels in tissues producing artemisinin and consequently its effect on artemisinin production may be limited. Finally, squalene synthase but not other sesquiterpene synthases appears to be a significant competitor for farnesyl diphosphate in artemisinin-producing tissues.


Assuntos
Artemisia annua/genética , Artemisininas/metabolismo , Oxirredutases/metabolismo , Proteínas de Plantas/metabolismo , Família Aldeído Desidrogenase 1 , Alquil e Aril Transferases/genética , Alquil e Aril Transferases/metabolismo , Artemisia annua/enzimologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Isoenzimas/genética , Isoenzimas/metabolismo , Oxirredutases/genética , Proteínas de Plantas/genética , RNA de Plantas/genética , Retinal Desidrogenase/genética , Retinal Desidrogenase/metabolismo
14.
Phytochemistry ; 70(9): 1123-1128, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19664791

RESUMO

A method based on the laser microdissection pressure catapulting technique has been developed for isolation of whole intact cells. Using a modified tissue preparation method, one outer pair of apical cells and two pairs of sub-apical, chloroplast-containing cells, were isolated from glandular secretory trichomes of Artemisia annua. A. annua is the source of the widely used antimalarial drug artemisinin. The biosynthesis of artemisinin has been proposed to be located to the glandular trichomes. The first committed steps in the conversion of FPP to artemisinin are conducted by amorpha-4,11-diene synthase, amorpha-4,11-diene hydroxylase, a cytochrome P450 monooxygenase (CYP71AV1) and artemisinic aldehyde Delta11(13) reductase. The expression of the three biosynthetic enzymes in the different cell types has been studied. In addition, the expression of farnesyldiphosphate synthase producing the precursor of artemisinin has been investigated. Our experiments showed expression of farnesyldiphosphate synthase in apical and sub-apical cells as well as in mesophyl cells while the three enzymes involved in artemisinin biosynthesis were expressed only in the apical cells. Elongation factor 1alpha was used as control and it was expressed in all cell types. We conclude that artemisinin biosynthesis is taking place in the two outer apical cells while the two pairs of chloroplast-containing cells have other functions in the overall metabolism of glandular trichomes.


Assuntos
Artemisia annua/metabolismo , Artemisininas/metabolismo , Alquil e Aril Transferases/metabolismo , Artemisia annua/citologia , Artemisia annua/enzimologia , Sequência de Bases , Cloroplastos/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Oxirredutases/metabolismo , Folhas de Planta/enzimologia , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo
15.
Virus Res ; 113(2): 107-15, 2005 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15964091

RESUMO

The six coxsackievirus B serotypes (CVB1-6) use the coxsackie- and adenovirus receptor (CAR) for host cell entry. Four of these serotypes, CVB1, 3, 5 and 6, have also shown the capacity to replicate and cause cytolysis in rhabdomyosarcoma (RD) cells, a CAR-deficient cell line. This extended tropism has been associated with an acquired ability to bind decay accelerating factor (DAF). In this study, we have adapted the CVB2 prototype strain Ohio-1 (CVB2/O) to replicate in RD cells. Two types of infection were identified: (I) an enterovirus-typical, lytic infection, and (II) a non-lytic infection. Both CVB2/O-RD variants retained the prototype-ability to cause cytopathic effect in HeLa cells using CAR as receptor. Phenotypic and genotypic changes in the CVB2/O-RD-variants were determined and compared to the prototype cultured in HeLa cells. Inhibition studies using antibodies against CAR and DAF revealed a maintained ability of the CVB2/O-RD-variants to bind CAR, but no binding to DAF was observed. In addition, neither the prototype nor the CVB2/O-RD-variants were able to cause hemagglutination in human red blood cells, an enterovirus feature associated with affinity for DAF. Sequence analysis of the CVB2/O-RD-variants showed acquired mutations in the capsid region, suggesting extended receptor usage towards an alternative, yet unidentified, receptor for CVB2.


Assuntos
Enterovirus Humano B/fisiologia , Adaptação Fisiológica , Animais , Antígenos CD55/metabolismo , Células CHO , Proteínas de Ligação ao Cálcio/deficiência , Proteínas de Ligação ao Cálcio/genética , Proteínas do Capsídeo/química , Linhagem Celular Tumoral , Cricetinae , Efeito Citopatogênico Viral , Enterovirus Humano B/química , Proteínas do Olho/genética , Hemaglutinação por Vírus , Humanos , Lipoproteínas/deficiência , Lipoproteínas/genética , Modelos Moleculares , Recoverina , Rabdomiossarcoma/imunologia , Rabdomiossarcoma/virologia , Inoculações Seriadas , Replicação Viral
16.
Eur J Biochem ; 269(14): 3570-7, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12135497

RESUMO

A clone encoding farnesyl diphosphate synthase (FPPS) was obtained by PCR from a cDNA library made from young leaves of Artemisia annua. A cDNA clone encoding the tobacco epi-aristolochene synthase (eAS) was kindly supplied by J. Chappell (University of Kentucky, Lexington, KY, USA). Two fusions were constructed, i.e. FPPS/eAS and eAS/FPPS. The stop codon of the N-terminal enzyme was removed and replaced by a short peptide (Gly-Ser-Gly) to introduce a linker between the two ORFs. These two fusions and the two single cDNA clones were separately introduced into a bacterial expression vector (pET32). Escherichia coli was transformed with the expression vectors and enzymatically active soluble proteins were obtained after induction with isopropyl thio-beta-d-thiogalactoside. The recombinant enzymes were purified using immobilized metal affinity chromatography on Co2+ columns. The fusion enzymes produced epi-aristolochene from isopentenyl diphosphate through a coupled reaction. The Km values of FPPS and eAS for isopentenyl diphosphate and farnesyl diphosphate, respectively, were essentially the same for the single and fused enzymes. The bifunctional enzymes showed a more efficient conversion of isopentenyl diphosphate to epi-aristolochene than the corresponding amount of single enzymes.


Assuntos
Alquil e Aril Transferases/genética , Artemisia/enzimologia , Hemiterpenos , Isomerases/genética , Nicotiana/enzimologia , Proteínas de Plantas/genética , Engenharia de Proteínas , Sesquiterpenos/metabolismo , Alquil e Aril Transferases/química , Alquil e Aril Transferases/metabolismo , Clonagem Molecular , DNA Complementar/genética , Escherichia coli , Genes Sintéticos , Geraniltranstransferase , Isomerases/química , Isomerases/metabolismo , Cinética , Fases de Leitura Aberta/genética , Compostos Organofosforados/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...