Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 9(1): 19281, 2019 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-31848402

RESUMO

Low-frequency vibrations are crucial for protein structure and function, but only a few experimental techniques can shine light on them. The main challenge when addressing protein dynamics in the terahertz domain is the ubiquitous water that exhibit strong absorption. In this paper, we observe the protein atoms directly using X-ray crystallography in bovine trypsin at 100 K while irradiating the crystals with 0.5 THz radiation alternating on and off states. We observed that the anisotropy of atomic displacements increased upon terahertz irradiation. Atomic displacement similarities developed between chemically related atoms and between atoms of the catalytic machinery. This pattern likely arises from delocalized polar vibrational modes rather than delocalized elastic deformations or rigid-body displacements. The displacement correlation between these atoms were detected by a hierarchical clustering method, which can assist the analysis of other ultra-high resolution crystal structures. These experimental and analytical tools provide a detailed description of protein dynamics to complement the structural information from static diffraction experiments.


Assuntos
Catálise/efeitos da radiação , Conformação Proteica/efeitos da radiação , Proteínas/ultraestrutura , Tripsina/ultraestrutura , Animais , Anisotropia , Bovinos , Cristalografia por Raios X , Modelos Moleculares , Proteínas/química , Proteínas/efeitos da radiação , Radiação , Tripsina/química , Tripsina/efeitos da radiação , Vibração , Água/química
2.
Sci Adv ; 5(5): eaav8801, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31058226

RESUMO

The possibility of imaging single proteins constitutes an exciting challenge for x-ray lasers. Despite encouraging results on large particles, imaging small particles has proven to be difficult for two reasons: not quite high enough pulse intensity from currently available x-ray lasers and, as we demonstrate here, contamination of the aerosolized molecules by nonvolatile contaminants in the solution. The amount of contamination on the sample depends on the initial droplet size during aerosolization. Here, we show that, with our electrospray injector, we can decrease the size of aerosol droplets and demonstrate virtually contaminant-free sample delivery of organelles, small virions, and proteins. The results presented here, together with the increased performance of next-generation x-ray lasers, constitute an important stepping stone toward the ultimate goal of protein structure determination from imaging at room temperature and high temporal resolution.

3.
IUCrJ ; 5(Pt 5): 531-541, 2018 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-30224956

RESUMO

Diffraction before destruction using X-ray free-electron lasers (XFELs) has the potential to determine radiation-damage-free structures without the need for crystallization. This article presents the three-dimensional reconstruction of the Melbournevirus from single-particle X-ray diffraction patterns collected at the LINAC Coherent Light Source (LCLS) as well as reconstructions from simulated data exploring the consequences of different kinds of experimental sources of noise. The reconstruction from experimental data suffers from a strong artifact in the center of the particle. This could be reproduced with simulated data by adding experimental background to the diffraction patterns. In those simulations, the relative density of the artifact increases linearly with background strength. This suggests that the artifact originates from the Fourier transform of the relatively flat background, concentrating all power in a central feature of limited extent. We support these findings by significantly reducing the artifact through background removal before the phase-retrieval step. Large amounts of blurring in the diffraction patterns were also found to introduce diffuse artifacts, which could easily be mistaken as biologically relevant features. Other sources of noise such as sample heterogeneity and variation of pulse energy did not significantly degrade the quality of the reconstructions. Larger data volumes, made possible by the recent inauguration of high repetition-rate XFELs, allow for increased signal-to-background ratio and provide a way to minimize these artifacts. The anticipated development of three-dimensional Fourier-volume-assembly algorithms which are background aware is an alternative and complementary solution, which maximizes the use of data.

4.
Acta Crystallogr A Found Adv ; 72(Pt 3): 406-11, 2016 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-27126118

RESUMO

In experimental research referencing two or more measurements to one another is a powerful tool to reduce the effect of systematic errors between different sets of measurements. The interesting quantity is usually derived from two measurements on the same sample under different conditions. While an elaborate experimental design is essential for improving the estimate, the data analysis should also maximally exploit the covariance between the measurements. In X-ray crystallography the difference between structure-factor amplitudes carries important information to solve experimental phasing problems or to determine time-dependent structural changes in pump-probe experiments. Here a multivariate Bayesian method was used to analyse intensity measurement pairs to determine their underlying structure-factor amplitudes and their differences. The posterior distribution of the model parameter was approximated with a Markov chain Monte Carlo algorithm. The described merging method is shown to be especially advantageous when systematic and random errors result in recording negative intensity measurements.

5.
Struct Dyn ; 2(5): 054702, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26798828

RESUMO

Whether long-range quantum coherent states could exist in biological systems, and beyond low-temperature regimes where quantum physics is known to be applicable, has been the subject to debate for decades. It was proposed by Fröhlich that vibrational modes within protein molecules can order and condense into a lowest-frequency vibrational mode in a process similar to Bose-Einstein condensation, and thus that macroscopic coherence could potentially be observed in biological systems. Despite the prediction of these so-called Fröhlich condensates almost five decades ago, experimental evidence thereof has been lacking. Here, we present the first experimental observation of Fröhlich condensation in a protein structure. To that end, and to overcome the challenges associated with probing low-frequency molecular vibrations in proteins (which has hampered understanding of their role in proteins' function), we combined terahertz techniques with a highly sensitive X-ray crystallographic method to visualize low-frequency vibrational modes in the protein structure of hen-egg white lysozyme. We found that 0.4 THz electromagnetic radiation induces non-thermal changes in electron density. In particular, we observed a local increase of electron density in a long α-helix motif consistent with a subtle longitudinal compression of the helix. These observed electron density changes occur at a low absorption rate indicating that thermalization of terahertz photons happens on a micro- to milli-second time scale, which is much slower than the expected nanosecond time scale due to damping of delocalized low frequency vibrations. Our analyses show that the micro- to milli-second lifetime of the vibration can only be explained by Fröhlich condensation, a phenomenon predicted almost half a century ago, yet never experimentally confirmed.

6.
PLoS One ; 9(5): e97654, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24830809

RESUMO

S100A4 interacts with many binding partners upon Ca2+ activation and is strongly associated with increased metastasis formation. In order to understand the role of the C-terminal random coil for the protein function we examined how small angle X-ray scattering of the wild-type S100A4 and its C-terminal deletion mutant (residues 1-88, Δ13) changes upon Ca2+ binding. We found that the scattering intensity of wild-type S100A4 changes substantially in the 0.15-0.25 Å-1 q-range whereas a similar change is not visible in the C-terminus deleted mutant. Ensemble optimization SAXS modeling indicates that the entire C-terminus is extended when Ca2+ is bound. Pulsed field gradient NMR measurements provide further support as the hydrodynamic radius in the wild-type protein increases upon Ca2+ binding while the radius of Δ13 mutant does not change. Molecular dynamics simulations provide a rational explanation of the structural transition: the positively charged C-terminal residues associate with the negatively charged residues of the Ca2+-free EF-hands and these interactions loosen up considerably upon Ca2+-binding. As a consequence the Δ13 mutant has increased Ca2+ affinity and is constantly loaded at Ca2+ concentration ranges typically present in cells. The activation of the entire C-terminal random coil may play a role in mediating interaction with selected partner proteins of S100A4.


Assuntos
Cálcio/química , Mutação , Proteínas S100/química , Algoritmos , Calorimetria , Cristalografia por Raios X , Humanos , Simulação de Dinâmica Molecular , Metástase Neoplásica , Miosina não Muscular Tipo IIA/química , Ligação Proteica , Estrutura Terciária de Proteína , Proteína A4 de Ligação a Cálcio da Família S100 , Espalhamento de Radiação , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...