Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Science ; 378(6621): 722-723, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36395227

RESUMO

High-performance electronics will focus on increasing the rate of computation.

2.
Nat Commun ; 6: 8572, 2015 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-26472191

RESUMO

Black phosphorus has been revisited recently as a new two-dimensional material showing potential applications in electronics and optoelectronics. Here we report the anisotropic in-plane thermal conductivity of suspended few-layer black phosphorus measured by micro-Raman spectroscopy. The armchair and zigzag thermal conductivities are ∼20 and ∼40 W m(-1) K(-1) for black phosphorus films thicker than 15 nm, respectively, and decrease to ∼10 and ∼20 W m(-1) K(-1) as the film thickness is reduced, exhibiting significant anisotropy. The thermal conductivity anisotropic ratio is found to be ∼2 for thick black phosphorus films and drops to ∼1.5 for the thinnest 9.5-nm-thick film. Theoretical modelling reveals that the observed anisotropy is primarily related to the anisotropic phonon dispersion, whereas the intrinsic phonon scattering rates are found to be similar along the armchair and zigzag directions. Surface scattering in the black phosphorus films is shown to strongly suppress the contribution of long mean-free-path acoustic phonons.

3.
Nano Lett ; 13(11): 5316-22, 2013 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-24164564

RESUMO

A microdevice was used to measure the in-plane thermoelectric properties of suspended bismuth telluride nanoplates from 9 to 25 nm thick. The results reveal a suppressed Seebeck coefficient together with a general trend of decreasing electrical conductivity and thermal conductivity with decreasing thickness. While the electrical conductivity of the nanoplates is still within the range reported for bulk Bi2Te3, the total thermal conductivity for nanoplates less than 20 nm thick is well below the reported bulk range. These results are explained by the presence of surface band bending and diffuse surface scattering of electrons and phonons in the nanoplates, where pronounced n-type surface band bending can yield suppressed and even negative Seebeck coefficient in unintentionally p-type doped nanoplates.

4.
Nano Lett ; 12(2): 758-62, 2012 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-22260387

RESUMO

Although carbon nanotube (CNT) transistors have been promoted for years as a replacement for silicon technology, there is limited theoretical work and no experimental reports on how nanotubes will perform at sub-10 nm channel lengths. In this manuscript, we demonstrate the first sub-10 nm CNT transistor, which is shown to outperform the best competing silicon devices with more than four times the diameter-normalized current density (2.41 mA/µm) at a low operating voltage of 0.5 V. The nanotube transistor exhibits an impressively small inverse subthreshold slope of 94 mV/decade-nearly half of the value expected from a previous theoretical study. Numerical simulations show the critical role of the metal-CNT contacts in determining the performance of sub-10 nm channel length transistors, signifying the need for more accurate theoretical modeling of transport between the metal and nanotube. The superior low-voltage performance of the sub-10 nm CNT transistor proves the viability of nanotubes for consideration in future aggressively scaled transistor technologies.


Assuntos
Nanotubos de Carbono/química , Transistores Eletrônicos , Tamanho da Partícula , Propriedades de Superfície
5.
Nat Mater ; 10(8): 566-7, 2011 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-21743449
6.
Nano Lett ; 8(7): 1819-24, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18558785

RESUMO

The effects of the various contact types and shapes on the performance of Schottky barrier graphene nanoribbon field-effect-transistors (GNRFETs) have been investigated using a real-space quantum transport simulator based on the NEGF approach self-consistently coupled to a three-dimensional Poisson solver for treating the electrostatics. The device channel considered is a double gate semiconducting armchair nanoribbon. The types of contacts considered are (a) a semi-infinite normal metal, (b) a semi-infinite graphene sheet, (c) finite size rectangular shape armchair graphene contacts, (d) finite size wedge shape graphene contacts, and (e) zigzag graphene nanoribbon contacts. Among these different contact types, the semi-infinite graphene sheet contacts show the worst performance because of their very low density of states around the Dirac point resulting in low transmission possibility through the Schottky barrier, both at ON and OFF states. Although all other types of contacts can have significant enhancement in I ON to I OFF ratio, the zigzag GNR contacts show promising and size invariant performance due to the metallic properties.

7.
Nano Lett ; 8(6): 1596-601, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18457455

RESUMO

Optical emission from carbon nanotube transistors (CNTFETs) has recently attracted significant attention due to its potential applications. In this paper, we use a self-consistent numerical solution of the Boltzmann transport equation in the presence of both phonon and exciton scattering to present a detailed study of the operation of a partially suspended CNTFET light emitter, which has been discussed in a recent experiment. We determine the energy distribution of hot carriers in the CNTFET and, as reported in the experiment, observe localized generation of excitons near the trench-substrate junction and an exponential increase in emission intensity with a linear increase in current versus gate voltage. We further provide detailed insight into device operation and propose optimization schemes for efficient exciton generation; a deeper trench increases the generation efficiency, and use of high-k substrate oxides could lead to even larger enhancements.


Assuntos
Desenho Assistido por Computador , Modelos Químicos , Nanotubos de Carbono/química , Transdutores , Transistores Eletrônicos , Simulação por Computador , Luz
8.
Nano Lett ; 7(5): 1160-4, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17388638

RESUMO

Band-to-band tunneling (BTBT) devices have recently gained a lot of interest due to their potential for reducing power dissipation in integrated circuits. We have performed extensive simulations for the BTBT operation of carbon nanotube metal-oxide-semiconductor field-effect transistors (CNT-MOSFETs) using the nonequilibrium Green's function formalism for both ballistic and dissipative quantum transport. In comparison with recently reported experimental data (J. Am. Chem. Soc. 2006, 128, 3518-3519), we have obtained strong evidence that BTBT in CNT-MOSFETs is dominated by optical phonon assisted inelastic transport, which can have important implications on the transistor characteristics. It is shown that, under large biasing conditions, two-phonon scattering may also become important.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...