Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609322

RESUMO

Although respiratory symptoms are the most prevalent disease manifestation of infection by Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), nearly 20% of hospitalized patients are at risk for thromboembolic events 1 . This prothrombotic state is considered a key factor in the increased risk of stroke, which has been observed clinically during both acute infection and long after symptoms have cleared 2 . Here we developed a model of SARS-CoV-2 infection using human-induced pluripotent stem cell-derived endothelial cells, pericytes, and smooth muscle cells to recapitulate the vascular pathology associated with SARS-CoV-2 exposure. Our results demonstrate that perivascular cells, particularly smooth muscle cells (SMCs), are a specifically susceptible vascular target for SARS-CoV-2 infection. Utilizing RNA sequencing, we characterized the transcriptomic changes accompanying SARS-CoV-2 infection of SMCs, and endothelial cells (ECs). We observed that infected human SMCs shift to a pro-inflammatory state and increase the expression of key mediators of the coagulation cascade. Further, we showed human ECs exposed to the secretome of infected SMCs produce hemostatic factors that can contribute to vascular dysfunction, despite not being susceptible to direct infection. The findings here recapitulate observations from patient sera in human COVID-19 patients and provide mechanistic insight into the unique vascular implications of SARS-CoV-2 infection at a cellular level.

2.
Adv Healthc Mater ; 12(7): e2202221, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36495560

RESUMO

Multielectrode arrays would benefit from intimate engagement with neural cells, but typical arrays do not present a physical environment that mimics that of neural tissues. It is hypothesized that a porous, conductive hydrogel scaffold with appropriate mechanical and conductive properties could support neural cells in 3D, while tunable electrical and mechanical properties could modulate the growth and differentiation of the cellular networks. By incorporating carbon nanomaterials into an alginate hydrogel matrix, and then freeze-drying the formulations, scaffolds which mimic neural tissue properties are formed. Neural progenitor cells (NPCs) incorporated in the scaffolds form neurite networks which span the material in 3D and differentiate into astrocytes and myelinating oligodendrocytes. Viscoelastic and more conductive scaffolds produce more dense neurite networks, with an increased percentage of astrocytes and higher myelination. Application of exogenous electrical stimulation to the scaffolds increases the percentage of astrocytes and the supporting cells localize differently with the surrounding neurons. The tunable biomaterial scaffolds can support neural cocultures for over 12 weeks, and enable a physiologically mimicking in vitro platform to study the formation of neuronal networks. As these materials have sufficient electrical properties to be used as electrodes in implantable arrays, they may allow for the creation of biohybrid neural interfaces and living electrodes.


Assuntos
Tecido Nervoso , Células-Tronco Neurais , Hidrogéis/farmacologia , Diferenciação Celular , Astrócitos , Alicerces Teciduais , Engenharia Tecidual
3.
Biol Psychiatry ; 93(1): 71-81, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36372569

RESUMO

BACKGROUND: Fragile X syndrome (FXS) is characterized by physical abnormalities, anxiety, intellectual disability, hyperactivity, autistic behaviors, and seizures. Abnormal neuronal development in FXS is poorly understood. Data on patients with FXS remain scarce, and FXS animal models have failed to yield successful therapies. In vitro models do not fully recapitulate the morphology and function of human neurons. METHODS: To mimic human neuron development in vivo, we coinjected neural precursor cells derived from FXS patient-derived induced pluripotent stem cells and neural precursor cells derived from corrected isogenic control induced pluripotent stem cells into the brain of neonatal immune-deprived mice. RESULTS: The transplanted cells populated the brain and a proportion differentiated into neurons and glial cells. Immunofluorescence and single and bulk RNA sequencing analyses showed accelerated maturation of FXS neurons after an initial delay. Additionally, we found increased percentages of Arc- and Egr-1-positive FXS neurons and wider dendritic protrusions of mature FXS striatal medium spiny neurons. CONCLUSIONS: This transplantation approach provides new insights into the alterations of neuronal development in FXS by facilitating physiological development of cells in a 3-dimensional context.


Assuntos
Síndrome do Cromossomo X Frágil , Células-Tronco Neurais , Humanos , Camundongos , Animais , Síndrome do Cromossomo X Frágil/genética , Proteína do X Frágil da Deficiência Intelectual/genética , Proteína do X Frágil da Deficiência Intelectual/metabolismo , Células-Tronco Neurais/metabolismo , Neurônios/metabolismo , Fenótipo , Encéfalo/metabolismo , Camundongos Knockout
4.
Nat Commun ; 12(1): 5123, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446700

RESUMO

Understanding the molecular underpinnings of pluripotency is a prerequisite for optimal maintenance and application of embryonic stem cells (ESCs). While the protein-protein interactions of core pluripotency factors have been identified in mouse ESCs, their interactome in human ESCs (hESCs) has not to date been explored. Here we mapped the OCT4 interactomes in naïve and primed hESCs, revealing extensive connections to mammalian ATP-dependent nucleosome remodeling complexes. In naïve hESCs, OCT4 is associated with both BRG1 and BRM, the two paralog ATPases of the BAF complex. Genome-wide location analyses and genetic studies reveal that these two enzymes cooperate in a functionally redundant manner in the transcriptional regulation of blastocyst-specific genes. In contrast, in primed hESCs, OCT4 cooperates with BRG1 and SOX2 to promote chromatin accessibility at ectodermal genes. This work reveals how a common transcription factor utilizes differential BAF complexes to control distinct transcriptional programs in naïve and primed hESCs.


Assuntos
Trifosfato de Adenosina/metabolismo , Cromatina/metabolismo , DNA Helicases/metabolismo , Células-Tronco Embrionárias/metabolismo , Proteínas Nucleares/metabolismo , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Fatores de Transcrição/metabolismo , Cromatina/genética , Montagem e Desmontagem da Cromatina , DNA Helicases/genética , Regulação da Expressão Gênica , Humanos , Proteínas Nucleares/genética , Nucleossomos/genética , Nucleossomos/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Ligação Proteica , Fatores de Transcrição SOXB1/genética , Fatores de Transcrição/genética
5.
Cell Rep ; 35(11): 109233, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-34133938

RESUMO

Naive human embryonic stem cells (hESCs) have been isolated that more closely resemble the pre-implantation epiblast compared to conventional "primed" hESCs, but the signaling principles underlying these discrete stem cell states remain incompletely understood. Here, we describe the results from a high-throughput screen using ∼3,000 well-annotated compounds to identify essential signaling requirements for naive human pluripotency. We report that MEK1/2 inhibitors can be replaced during maintenance of naive human pluripotency by inhibitors targeting either upstream (FGFR, RAF) or downstream (ERK1/2) kinases. Naive hESCs maintained under these alternative conditions display elevated levels of ERK phosphorylation but retain genome-wide DNA hypomethylation and a transcriptional identity of the pre-implantation epiblast. In contrast, dual inhibition of MEK and ERK promotes efficient primed-to-naive resetting in combination with PKC, ROCK, and TNKS inhibitors and activin A. This work demonstrates that induction and maintenance of naive human pluripotency are governed by distinct signaling requirements.


Assuntos
Ensaios de Triagem em Larga Escala , Células-Tronco Pluripotentes/metabolismo , Transdução de Sinais , Ativinas/farmacologia , Células Cultivadas , Implantação do Embrião/efeitos dos fármacos , Humanos , Modelos Biológicos , Células-Tronco Pluripotentes/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Quinases raf/antagonistas & inibidores , Quinases raf/metabolismo
6.
Sci Adv ; 7(5)2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33514545

RESUMO

Slow progress in the fight against neurodegenerative diseases (NDs) motivates an urgent need for highly controlled in vitro systems to investigate organ-organ- and organ-immune-specific interactions relevant for disease pathophysiology. Of particular interest is the gut/microbiome-liver-brain axis for parsing out how genetic and environmental factors contribute to NDs. We have developed a mesofluidic platform technology to study gut-liver-cerebral interactions in the context of Parkinson's disease (PD). It connects microphysiological systems (MPSs) of the primary human gut and liver with a human induced pluripotent stem cell-derived cerebral MPS in a systemically circulated common culture medium containing CD4+ regulatory T and T helper 17 cells. We demonstrate this approach using a patient-derived cerebral MPS carrying the PD-causing A53T mutation, gaining two important findings: (i) that systemic interaction enhances features of in vivo-like behavior of cerebral MPSs, and (ii) that microbiome-associated short-chain fatty acids increase expression of pathology-associated pathways in PD.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Doença de Parkinson , Encéfalo/metabolismo , Humanos , Fígado/metabolismo , Doenças Neurodegenerativas/etiologia , Doenças Neurodegenerativas/metabolismo , Doença de Parkinson/genética , Doença de Parkinson/metabolismo
7.
Nature ; 586(7829): 440-444, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32698189

RESUMO

Methyl CpG binding protein 2 (MeCP2) is a key component of constitutive heterochromatin, which is crucial for chromosome maintenance and transcriptional silencing1-3. Mutations in the MECP2 gene cause the progressive neurodevelopmental disorder Rett syndrome3-5, which is associated with severe mental disability and autism-like symptoms that affect girls during early childhood. Although previously thought to be a dense and relatively static structure1,2, heterochromatin is now understood to exhibit properties consistent with a liquid-like condensate6,7. Here we show that MeCP2 is a dynamic component of heterochromatin condensates in cells, and is stimulated by DNA to form liquid-like condensates. MeCP2 contains several domains that contribute to the formation of condensates, and mutations in MECP2 that lead to Rett syndrome disrupt the ability of MeCP2 to form condensates. Condensates formed by MeCP2 selectively incorporate and concentrate heterochromatin cofactors rather than components of euchromatic transcriptionally active condensates. We propose that MeCP2 enhances the separation of heterochromatin and euchromatin through its condensate partitioning properties, and that disruption of condensates may be a common consequence of mutations in MeCP2 that cause Rett syndrome.


Assuntos
Heterocromatina/metabolismo , Deficiência Intelectual/genética , Proteína 2 de Ligação a Metil-CpG/metabolismo , Mutação , Imunidade Adaptativa , Animais , Feminino , Imunidade Inata , Deficiência Intelectual/patologia , Proteína 2 de Ligação a Metil-CpG/genética , Camundongos , Neurônios/metabolismo , Neurônios/patologia , Fenótipo , Síndrome de Rett/genética
8.
Proc Natl Acad Sci U S A ; 116(19): 9527-9532, 2019 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-31019072

RESUMO

Zika virus (ZIKV) is a neurotropic and neurovirulent arbovirus that has severe detrimental impact on the developing human fetal brain. To date, little is known about the factors required for ZIKV infection of human neural cells. We identified ZIKV host genes in human pluripotent stem cell (hPSC)-derived neural progenitors (NPs) using a genome-wide CRISPR-Cas9 knockout screen. Mutations of host factors involved in heparan sulfation, endocytosis, endoplasmic reticulum processing, Golgi function, and interferon activity conferred resistance to infection with the Uganda strain of ZIKV and a more recent North American isolate. Host genes essential for ZIKV replication identified in human NPs also provided a low level of protection against ZIKV in isogenic human astrocytes. Our findings provide insights into host-dependent mechanisms for ZIKV infection in the highly vulnerable human NP cells and identify molecular targets for potential therapeutic intervention.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Células-Tronco Neurais/virologia , Replicação Viral/genética , Infecção por Zika virus/genética , Zika virus/fisiologia , Astrócitos/metabolismo , Astrócitos/patologia , Astrócitos/virologia , Linhagem Celular , Feminino , Estudo de Associação Genômica Ampla , Humanos , Masculino , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
9.
Cell Rep ; 25(2): 368-382.e5, 2018 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-30304678

RESUMO

Most genes mutated in microcephaly patients are expressed ubiquitously, and yet the brain is the only major organ compromised in most patients. Why the phenotype remains brain specific is poorly understood. In this study, we used in vitro differentiation of human embryonic stem cells to monitor the effect of a point mutation in kinetochore null protein 1 (KNL1; CASC5), identified in microcephaly patients, during in vitro brain development. We found that neural progenitors bearing a patient mutation showed reduced KNL1 levels, aneuploidy, and an abrogated spindle assembly checkpoint. By contrast, no reduction of KNL1 levels or abnormalities was observed in fibroblasts and neural crest cells. We established that the KNL1 patient mutation generates an exonic splicing silencer site, which mainly affects neural progenitors because of their higher levels of splicing proteins. Our results provide insight into the brain-specific phenomenon, consistent with microcephaly being the only major phenotype of patients bearing KNL1 mutation.


Assuntos
Encéfalo/patologia , Cinetocoros/patologia , Microcefalia/genética , Microcefalia/patologia , Proteínas Associadas aos Microtúbulos/genética , Mutação , Splicing de RNA , Encéfalo/metabolismo , Células Cultivadas , Células-Tronco Embrionárias/metabolismo , Células-Tronco Embrionárias/patologia , Humanos , Cinetocoros/metabolismo , Pontos de Checagem da Fase M do Ciclo Celular , Células-Tronco Neurais/metabolismo , Células-Tronco Neurais/patologia , Fenótipo
10.
Cell Stem Cell ; 19(4): 502-515, 2016 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-27424783

RESUMO

Recent studies have aimed to convert cultured human pluripotent cells to a naive state, but it remains unclear to what extent the resulting cells recapitulate in vivo naive pluripotency. Here we propose a set of molecular criteria for evaluating the naive human pluripotent state by comparing it to the human embryo. We show that transcription of transposable elements provides a sensitive measure of the concordance between pluripotent stem cells and early human development. We also show that induction of the naive state is accompanied by genome-wide DNA hypomethylation, which is reversible except at imprinted genes, and that the X chromosome status resembles that of the human preimplantation embryo. However, we did not see efficient incorporation of naive human cells into mouse embryos. Overall, the different naive conditions we tested showed varied relationships to human embryonic states based on molecular criteria, providing a backdrop for future analysis of naive human pluripotency.


Assuntos
Células-Tronco Pluripotentes/metabolismo , Animais , Blastocisto/citologia , Blastocisto/metabolismo , Diferenciação Celular/genética , Linhagem Celular , Quimera/metabolismo , Cromossomos Humanos X/genética , Fase de Clivagem do Zigoto/metabolismo , Metilação de DNA/genética , Elementos de DNA Transponíveis/genética , DNA Mitocondrial/metabolismo , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Impressão Genômica , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Masculino , Camundongos , Mitocôndrias/metabolismo , Mórula/citologia , Mórula/metabolismo , Células-Tronco Pluripotentes/citologia , Reação em Cadeia da Polimerase , Transcrição Gênica
11.
Cell Stem Cell ; 15(4): 471-487, 2014 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-25090446

RESUMO

Embryonic stem cells (ESCs) of mice and humans have distinct molecular and biological characteristics, raising the question of whether an earlier, "naive" state of pluripotency may exist in humans. Here we took a systematic approach to identify small molecules that support self-renewal of naive human ESCs based on maintenance of endogenous OCT4 distal enhancer activity, a molecular signature of ground state pluripotency. Iterative chemical screening identified a combination of five kinase inhibitors that induces and maintains OCT4 distal enhancer activity when applied directly to conventional human ESCs. These inhibitors generate human pluripotent cells in which transcription factors associated with the ground state of pluripotency are highly upregulated and bivalent chromatin domains are depleted. Comparison with previously reported naive human ESCs indicates that our conditions capture a distinct pluripotent state in humans that closely resembles that of mouse ESCs. This study presents a framework for defining the culture requirements of naive human pluripotent cells.


Assuntos
Técnicas de Cultura de Células/métodos , Células-Tronco Pluripotentes/citologia , Sobrevivência Celular , Cromatina/metabolismo , Elementos Facilitadores Genéticos/genética , Perfilação da Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/metabolismo , Humanos , Dados de Sequência Molecular , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...