Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 111
Filtrar
1.
Radiol Artif Intell ; : e240225, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984986

RESUMO

"Just Accepted" papers have undergone full peer review and have been accepted for publication in Radiology: Artificial Intelligence. This article will undergo copyediting, layout, and proof review before it is published in its final version. Please note that during production of the final copyedited article, errors may be discovered which could affect the content. The Radiological Society of North of America (RSNA) and the Medical Image Computing and Computer Assisted Intervention (MICCAI) Society have led a series of joint panels and seminars focused on the present impact and future directions of artificial intelligence (AI) in radiology. These conversations have collected viewpoints from multidisciplinary experts in radiology, medical imaging, and machine learning on the current clinical penetration of AI technology in radiology, and how it is impacted by trust, reproducibility, explainability, and accountability. The collective points-both practical and philosophical-define the cultural changes for radiologists and AI scientists working together and describe the challenges ahead for AI technologies to meet broad approval. This article presents the perspectives of experts from MICCAI and RSNA on the clinical, cultural, computational, and regulatory considerations-coupled with recommended reading materials-essential to adopt AI technology successfully in radiology and more generally in clinical practice. The report emphasizes the importance of collaboration to improve clinical deployment and highlights the need to integrate clinical and medical imaging data and introduces strategies to ensure smooth and incentivized integration. ©RSNA, 2024.

3.
Eur Heart J ; 45(22): 2002-2012, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38503537

RESUMO

BACKGROUND AND AIMS: Early identification of cardiac structural abnormalities indicative of heart failure is crucial to improving patient outcomes. Chest X-rays (CXRs) are routinely conducted on a broad population of patients, presenting an opportunity to build scalable screening tools for structural abnormalities indicative of Stage B or worse heart failure with deep learning methods. In this study, a model was developed to identify severe left ventricular hypertrophy (SLVH) and dilated left ventricle (DLV) using CXRs. METHODS: A total of 71 589 unique CXRs from 24 689 different patients completed within 1 year of echocardiograms were identified. Labels for SLVH, DLV, and a composite label indicating the presence of either were extracted from echocardiograms. A deep learning model was developed and evaluated using area under the receiver operating characteristic curve (AUROC). Performance was additionally validated on 8003 CXRs from an external site and compared against visual assessment by 15 board-certified radiologists. RESULTS: The model yielded an AUROC of 0.79 (0.76-0.81) for SLVH, 0.80 (0.77-0.84) for DLV, and 0.80 (0.78-0.83) for the composite label, with similar performance on an external data set. The model outperformed all 15 individual radiologists for predicting the composite label and achieved a sensitivity of 71% vs. 66% against the consensus vote across all radiologists at a fixed specificity of 73%. CONCLUSIONS: Deep learning analysis of CXRs can accurately detect the presence of certain structural abnormalities and may be useful in early identification of patients with LV hypertrophy and dilation. As a resource to promote further innovation, 71 589 CXRs with adjoining echocardiographic labels have been made publicly available.


Assuntos
Aprendizado Profundo , Hipertrofia Ventricular Esquerda , Radiografia Torácica , Humanos , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Radiografia Torácica/métodos , Feminino , Masculino , Pessoa de Meia-Idade , Ecocardiografia/métodos , Idoso , Insuficiência Cardíaca/diagnóstico por imagem , Ventrículos do Coração/diagnóstico por imagem , Curva ROC
4.
J Am Med Inform Assoc ; 31(6): 1441-1444, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38452298

RESUMO

OBJECTIVES: This article aims to examine how generative artificial intelligence (AI) can be adopted with the most value in health systems, in response to the Executive Order on AI. MATERIALS AND METHODS: We reviewed how technology has historically been deployed in healthcare, and evaluated recent examples of deployments of both traditional AI and generative AI (GenAI) with a lens on value. RESULTS: Traditional AI and GenAI are different technologies in terms of their capability and modes of current deployment, which have implications on value in health systems. DISCUSSION: Traditional AI when applied with a framework top-down can realize value in healthcare. GenAI in the short term when applied top-down has unclear value, but encouraging more bottom-up adoption has the potential to provide more benefit to health systems and patients. CONCLUSION: GenAI in healthcare can provide the most value for patients when health systems adapt culturally to grow with this new technology and its adoption patterns.


Assuntos
Inteligência Artificial , Atenção à Saúde , Humanos
5.
Radiol Artif Intell ; 6(3): e230227, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38477659

RESUMO

The Radiological Society of North America (RSNA) has held artificial intelligence competitions to tackle real-world medical imaging problems at least annually since 2017. This article examines the challenges and processes involved in organizing these competitions, with a specific emphasis on the creation and curation of high-quality datasets. The collection of diverse and representative medical imaging data involves dealing with issues of patient privacy and data security. Furthermore, ensuring quality and consistency in data, which includes expert labeling and accounting for various patient and imaging characteristics, necessitates substantial planning and resources. Overcoming these obstacles requires meticulous project management and adherence to strict timelines. The article also highlights the potential of crowdsourced annotation to progress medical imaging research. Through the RSNA competitions, an effective global engagement has been realized, resulting in innovative solutions to complex medical imaging problems, thus potentially transforming health care by enhancing diagnostic accuracy and patient outcomes. Keywords: Use of AI in Education, Artificial Intelligence © RSNA, 2024.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Diagnóstico por Imagem/métodos , Sociedades Médicas , América do Norte
6.
J Am Coll Radiol ; 21(7): 991-992, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38302045
8.
Cell Rep Med ; 4(10): 101207, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37769656

RESUMO

Clinical decision support tools can improve diagnostic performance or reduce variability, but they are also subject to post-deployment underperformance. Although using AI in an assistive setting offsets many concerns with autonomous AI in medicine, systems that present all predictions equivalently fail to protect against key AI safety concerns. We design a decision pipeline that supports the diagnostic model with an ecosystem of models, integrating disagreement prediction, clinical significance categorization, and prediction quality modeling to guide prediction presentation. We characterize disagreement using data from a deployed chest X-ray interpretation aid and compare clinician burden in this proposed pipeline to the diagnostic model in isolation. The average disagreement rate is 6.5%, and the expected burden reduction is 4.8%, even if 5% of disagreements on urgent findings receive a second read. We conclude that, in our production setting, we can adequately balance risk mitigation with clinician burden if disagreement false positives are reduced.


Assuntos
Inteligência Artificial , Radiologistas , Humanos , Relevância Clínica , Medicina , Estudos Retrospectivos
9.
Nat Commun ; 14(1): 4039, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37419921

RESUMO

Deep learning (DL) models can harness electronic health records (EHRs) to predict diseases and extract radiologic findings for diagnosis. With ambulatory chest radiographs (CXRs) frequently ordered, we investigated detecting type 2 diabetes (T2D) by combining radiographic and EHR data using a DL model. Our model, developed from 271,065 CXRs and 160,244 patients, was tested on a prospective dataset of 9,943 CXRs. Here we show the model effectively detected T2D with a ROC AUC of 0.84 and a 16% prevalence. The algorithm flagged 1,381 cases (14%) as suspicious for T2D. External validation at a distinct institution yielded a ROC AUC of 0.77, with 5% of patients subsequently diagnosed with T2D. Explainable AI techniques revealed correlations between specific adiposity measures and high predictivity, suggesting CXRs' potential for enhanced T2D screening.


Assuntos
Aprendizado Profundo , Diabetes Mellitus Tipo 2 , Humanos , Diabetes Mellitus Tipo 2/diagnóstico por imagem , Radiografia Torácica/métodos , Estudos Prospectivos , Radiografia
11.
NPJ Digit Med ; 6(1): 74, 2023 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-37100953

RESUMO

Advancements in deep learning and computer vision provide promising solutions for medical image analysis, potentially improving healthcare and patient outcomes. However, the prevailing paradigm of training deep learning models requires large quantities of labeled training data, which is both time-consuming and cost-prohibitive to curate for medical images. Self-supervised learning has the potential to make significant contributions to the development of robust medical imaging models through its ability to learn useful insights from copious medical datasets without labels. In this review, we provide consistent descriptions of different self-supervised learning strategies and compose a systematic review of papers published between 2012 and 2022 on PubMed, Scopus, and ArXiv that applied self-supervised learning to medical imaging classification. We screened a total of 412 relevant studies and included 79 papers for data extraction and analysis. With this comprehensive effort, we synthesize the collective knowledge of prior work and provide implementation guidelines for future researchers interested in applying self-supervised learning to their development of medical imaging classification models.

15.
NPJ Digit Med ; 5(1): 157, 2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36261469

RESUMO

Medical professionals are increasingly required to use digital technologies as part of care delivery and this may represent a risk for medical error and subsequent malpractice liability. For example, if there is a medical error, should the error be attributed to the clinician or the artificial intelligence-based clinical decision-making system? In this article, we identify and discuss digital health technology-specific risks for malpractice liability and offer practical advice for the mitigation of malpractice risk.

17.
Radiology ; 305(3): 555-563, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35916673

RESUMO

As the role of artificial intelligence (AI) in clinical practice evolves, governance structures oversee the implementation, maintenance, and monitoring of clinical AI algorithms to enhance quality, manage resources, and ensure patient safety. In this article, a framework is established for the infrastructure required for clinical AI implementation and presents a road map for governance. The road map answers four key questions: Who decides which tools to implement? What factors should be considered when assessing an application for implementation? How should applications be implemented in clinical practice? Finally, how should tools be monitored and maintained after clinical implementation? Among the many challenges for the implementation of AI in clinical practice, devising flexible governance structures that can quickly adapt to a changing environment will be essential to ensure quality patient care and practice improvement objectives.


Assuntos
Inteligência Artificial , Radiologia , Humanos , Radiografia , Algoritmos , Qualidade da Assistência à Saúde
18.
Pediatr Radiol ; 52(11): 2094-2100, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996023

RESUMO

Artificial intelligence research in health care has undergone tremendous growth in the last several years thanks to the explosion of digital health care data and systems that can leverage large amounts of data to learn patterns that can be applied to clinical tasks. In addition, given broad acceleration in machine learning across industries like transportation, media and commerce, there has been a significant growth in demand for machine-learning practitioners such as engineers and data scientists, who have skill sets that can be applied to health care use cases but who simultaneously lack important health care domain expertise. The purpose of this paper is to discuss the requirements of building an artificial-intelligence research enterprise including the research team, technical software/hardware, and procurement and curation of health care data.


Assuntos
Algoritmos , Inteligência Artificial , Humanos , Inteligência , Aprendizado de Máquina , Software
19.
NPJ Digit Med ; 5(1): 71, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35676445

RESUMO

Prostate cancer is the most frequent cancer in men and a leading cause of cancer death. Determining a patient's optimal therapy is a challenge, where oncologists must select a therapy with the highest likelihood of success and the lowest likelihood of toxicity. International standards for prognostication rely on non-specific and semi-quantitative tools, commonly leading to over- and under-treatment. Tissue-based molecular biomarkers have attempted to address this, but most have limited validation in prospective randomized trials and expensive processing costs, posing substantial barriers to widespread adoption. There remains a significant need for accurate and scalable tools to support therapy personalization. Here we demonstrate prostate cancer therapy personalization by predicting long-term, clinically relevant outcomes using a multimodal deep learning architecture and train models using clinical data and digital histopathology from prostate biopsies. We train and validate models using five phase III randomized trials conducted across hundreds of clinical centers. Histopathological data was available for 5654 of 7764 randomized patients (71%) with a median follow-up of 11.4 years. Compared to the most common risk-stratification tool-risk groups developed by the National Cancer Center Network (NCCN)-our models have superior discriminatory performance across all endpoints, ranging from 9.2% to 14.6% relative improvement in a held-out validation set. This artificial intelligence-based tool improves prognostication over standard tools and allows oncologists to computationally predict the likeliest outcomes of specific patients to determine optimal treatment. Outfitted with digital scanners and internet access, any clinic could offer such capabilities, enabling global access to therapy personalization.

20.
Lancet Digit Health ; 4(6): e406-e414, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35568690

RESUMO

BACKGROUND: Previous studies in medical imaging have shown disparate abilities of artificial intelligence (AI) to detect a person's race, yet there is no known correlation for race on medical imaging that would be obvious to human experts when interpreting the images. We aimed to conduct a comprehensive evaluation of the ability of AI to recognise a patient's racial identity from medical images. METHODS: Using private (Emory CXR, Emory Chest CT, Emory Cervical Spine, and Emory Mammogram) and public (MIMIC-CXR, CheXpert, National Lung Cancer Screening Trial, RSNA Pulmonary Embolism CT, and Digital Hand Atlas) datasets, we evaluated, first, performance quantification of deep learning models in detecting race from medical images, including the ability of these models to generalise to external environments and across multiple imaging modalities. Second, we assessed possible confounding of anatomic and phenotypic population features by assessing the ability of these hypothesised confounders to detect race in isolation using regression models, and by re-evaluating the deep learning models by testing them on datasets stratified by these hypothesised confounding variables. Last, by exploring the effect of image corruptions on model performance, we investigated the underlying mechanism by which AI models can recognise race. FINDINGS: In our study, we show that standard AI deep learning models can be trained to predict race from medical images with high performance across multiple imaging modalities, which was sustained under external validation conditions (x-ray imaging [area under the receiver operating characteristics curve (AUC) range 0·91-0·99], CT chest imaging [0·87-0·96], and mammography [0·81]). We also showed that this detection is not due to proxies or imaging-related surrogate covariates for race (eg, performance of possible confounders: body-mass index [AUC 0·55], disease distribution [0·61], and breast density [0·61]). Finally, we provide evidence to show that the ability of AI deep learning models persisted over all anatomical regions and frequency spectrums of the images, suggesting the efforts to control this behaviour when it is undesirable will be challenging and demand further study. INTERPRETATION: The results from our study emphasise that the ability of AI deep learning models to predict self-reported race is itself not the issue of importance. However, our finding that AI can accurately predict self-reported race, even from corrupted, cropped, and noised medical images, often when clinical experts cannot, creates an enormous risk for all model deployments in medical imaging. FUNDING: National Institute of Biomedical Imaging and Bioengineering, MIDRC grant of National Institutes of Health, US National Science Foundation, National Library of Medicine of the National Institutes of Health, and Taiwan Ministry of Science and Technology.


Assuntos
Aprendizado Profundo , Neoplasias Pulmonares , Inteligência Artificial , Detecção Precoce de Câncer , Humanos , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...