Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 16(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36984033

RESUMO

Composites based on natural rubber and plasticized starch obtained by the conventional method of sulfur cross-linking using four types of vulcanization accelerators (Diphenyl guanidine, 2-Mercaptobenzothiazole, N-Cyclohexyl-2-benzothiazole sulfenamide, and Tetramethylthiuram disulfide) were irradiated with an electron beam in the dose range of 150 and 450 kGy for the purpose of degradation. The vulcanization accelerators were used in different percentages and combinations, resulting in four mixtures with different potential during the cross-linking process (synergistic, activator, or additive). The resulting composites were investigated before and after irradiation in order to establish a connection between the type of accelerator mixture, irradiation dose, and composite properties (gel fraction, cross-linking degree, water absorption, mass loss in water and toluene, mechanical properties, and structural and morphological properties). The results showed that the mixtures became sensitive at the irradiation dose of 300 kGy and at the irradiation dose of 450 kGy, and the consequences of the degradation processes were discussed.

2.
Polymers (Basel) ; 15(4)2023 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-36850317

RESUMO

The historical artefacts of parchment are prone to degradation if the storage conditions are improper due to the collagen structure having a limited stability under physical, chemical, and biological agent attacks. The parchment structure is difficult to characterize due to the variety of manufacturing traditions (eastern/western), intrinsic variability of skins (i.e., species, breeding variation, living conditions, effects of pathologies, etc.), biodeterioration, and aging, and the main concern in its analysis is its uniformity. The deterioration of parchment collagen produces a rather stiff or in some circumstances, a relaxed structure. Any intervention or treatment of unique, very precious cultural heritage artefacts must not negatively influence the properties of the component materials. Gamma irradiation is a relatively new technique of bioremediation. Data on the leather properties pre- and post-ionizing radiation bioremediation treatments are few in the literature. Fewer data are available on the historical leather and parchment physical chemical characteristics after ionizing gamma irradiation. This research had two main objectives: (i) the characterization of the parchment structure's uniformity across the analyzed areas and its mechanical properties, i.e., tensile stress by mechanical tests and ATR-FTIR spectroscopy; and (ii) to establish parchment tolerance when exposed to ionizing gamma radiation as a pre-requisite for cultural heritage preservation irradiation treatment. It was found that the mechanical tests and ATR-FTIR spectroscopy may identify changes in the parchment's irradiated structure and that the preservation of cultural heritage parchment artefacts may be performed at maximum 15 kGy gamma irradiation dose.

3.
Int J Mol Sci ; 23(13)2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35805934

RESUMO

Composites based on natural rubber reinforced with mineral (precipitated silica and chalk) and organic (sawdust and hemp) fillers in amount of 50 phr were obtained by peroxide cross-linking in the presence of trimethylolpropane trimethacrylate and irradiated by electron beam in the dose range of 150 and 450 kGy with the purpose of degradation. The composites mechanical characteristics, gel fraction, cross-linking degree, water uptake and weight loss in water and toluene were evaluated by specific analysis. The changes in structure and morphology were also studied by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Based on the results obtained in the structural analysis, possible mechanisms specific to degradation are proposed. The increasing of irradiation dose to 450 kGy produced larger agglomerated structures, cracks and micro voids on the surface, as a result of the degradation process. This is consistent with that the increasing of irradiation dose to 450 kGy leads to a decrease in crosslinking and gel fraction but also drastic changes in mechanical properties specific to the composites' degradation processes. The irradiation of composites reinforced with organic fillers lead to the formation of specific degradation compounds of both natural rubber and cellulose (aldehydes, ketones, carboxylic acids, compounds with small macromolecules). In the case of the composites reinforced with mineral fillers the degradation can occur by the cleavage of hydrogen bonds formed between precipitated silica or chalk particles and polymeric matrix also.


Assuntos
Elétrons , Borracha , Carbonato de Cálcio , Borracha/química , Dióxido de Silício/química , Água
4.
Polymers (Basel) ; 13(12)2021 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-34208234

RESUMO

Polymeric composites based on natural rubber (NR) and plasticized starch (PS) obtained by peroxide cross-linking have been subjected to electron beam irradiation in order to investigate their degradation. The amount of PS ranged from 10 to 50 phr and the irradiation dose from 150 to 450 kGy. Irradiation was performed in atmospheric conditions using a linear electron accelerator of 5.5 MeV. Changes in chemical, physical, structural, and morphological properties of composites were correlated with variables, such as PS loading and irradiation dose. Thus, mechanical properties, gel fraction, cross-linking degree, water uptake, weight loss in toluene/water were compared with those obtained before irradiation. The changes in structure and morphology were studied by Fourier Transform Infrared Spectroscopy and Scanning Electron Microscopy. Both PS loading and irradiation dose were found to be responsible for the degradation installing. Moreover, it has been shown that at the dose of 450 kGy, chain scission is dominant over cross-linking.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...