Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Plants (Basel) ; 13(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38794419

RESUMO

Bryophytes are rich sources of diverse secondary metabolites with a wide range of biological activities, including anti-inflammatory, antitumor and antimicrobial effects. The aim of this study was to investigate the chemical composition of extracts from two different genotypes (Serbian and Hungarian) of the axenic moss Atrichum undulatum and evaluate the immunomodulatory potential of the prepared extracts in vitro. Both genotypes of moss samples were cultivated in vitro and subsequently extracted in a Soxhlet apparatus with methanol or ethyl acetate. The highest concentration of total phenolic compounds was found in the methanolic extract of the Serbian genotype (54.25 mg GAE/g extract), while the ethyl acetate extract of the Hungarian genotype showed the highest concentration of phenolic acids (163.20 mg CAE/extract), flavonoids (35.57 mg QE/extract), and flavonols (2.25 mg QE/extract). The extracts showed anti-neuroinflammatory properties by reducing the production of reactive oxygen species, nitric oxide, and tumor necrosis factor alpha by lipopolysaccharide-stimulated microglial cells. Moreover, they mitigated the cytotoxic effects of the pro-inflammatory mediators produced by activated microglia on neurons. The data obtained suggest that extracts from A. undulatum moss have promising anti-neuroinflammatory and neuroprotective properties, making them interesting candidates for further research to combat neuroinflammation.

2.
Int Immunopharmacol ; 121: 110525, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37356121

RESUMO

Activated microglia is critically involved in the regulation of neuroinflammation/neurodegradation. Hereby, the anti-inflammatory effects of the vitamin B complex (VBC - B1, B2, B3, B5, B6, and B12) on the function and phenotype of lipopolysaccharide (LPS)-stimulated BV2 microglial cells were examined in vitro. Additionally, VBC-treated microglia supernatants were evaluated on SH-SY5Y cells to investigate the effects on neurons' viability. Further, anti-inflammatory mechanisms of VBC were examined by molecular dockingstudies to determine the binding affinity of each VBC component to Toll-like receptor 4 (TLR4) signalling pathway proteins and inducible nitric oxide synthase. In addition, the dynamical model which simulates VBC inhibition of TLR4 signalling pathway proteins activated by LPS has been constructed and excellent agreement with experimental data has been observed (adjR2 = 0.9715 and 0.9909 for TNF-α and IL-6, respectively). The obtained data demonstrated that VBC treatment reduced the inflammatory mediators secreted by LPS-stimulated microglia, diminished their neurotoxic effects against neurons, and induced changes in phenotype profile toward M2 microglia type. Finally, the constructed dynamical model provides deeper insight into the involvement of each VBC component on the VBC inhibitory potential toward the TLR4 signalling pathway and enables optimization of novel VBC formulations as well as inhibitory potential of new putative inhibitors.


Assuntos
Neuroblastoma , Complexo Vitamínico B , Humanos , NF-kappa B/metabolismo , Complexo Vitamínico B/farmacologia , Inflamação/tratamento farmacológico , Microglia , Doenças Neuroinflamatórias , Lipopolissacarídeos/farmacologia , Receptor 4 Toll-Like/metabolismo , Anti-Inflamatórios/uso terapêutico , Ácido Fólico
3.
Nutrients ; 14(6)2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35334928

RESUMO

The present study aimed to investigate the neuroprotective effects of the vitamin B complex (B1, B2, B3, B5, B6, and B12-VBC), by studying the changes in the femoral nerve, quadriceps muscle, popliteal lymph nodes and gut microbiota in the rat model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). VBC treatment attenuated clinical signs of EAE during the disease, and reduced the duration of EAE thereby contributing to a faster recovery. In VBC-treated EAE rats, a significant decrease in nerve and muscle nuclear density was revealed during the onset period of the disease, while a marked increase was detected at the end of the disease, compared with untreated EAE rats. In the lymph nodes of VBC-treated EAE rats, a fewer number of lymphoid follicles in the cortical area and smaller epithelioid granulomas were detected. The changes in microbiota composition were examined using 16S rRNA gene sequencing and bioinformatics analysis, which revealed the potential of VBC treatment in establishing and/or maintaining gut microbiota homeostasis. Finally, the present study demonstrated that VBC treatment ameliorated the cellular changes in the affected peripheral nerve, muscles innervated by this nerve, and the gut microbiota dysbiosis which occurred during the EAE.


Assuntos
Encefalomielite Autoimune Experimental , Microbioma Gastrointestinal , Complexo Vitamínico B , Animais , Disbiose , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , RNA Ribossômico 16S/genética , Ratos , Complexo Vitamínico B/farmacologia
4.
Plants (Basel) ; 11(1)2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35009126

RESUMO

Numerous representatives of mosses, including Hypnum cupressiforme, have been used to alleviate different inflammation-related conditions. However, the mode of action underlying this anti-inflammatory potential has been poorly understood. Moreover, the influence of seasonality on the chemical composition and biological activity of mosses is generally overlooked. This study aimed to investigate the influence of seasonal changes (spring, summer, and autumn) on secondary metabolite composition and biological activities of ethyl acetate H. cupressiforme extracts. Antioxidant activity was measured using ß-carotene bleaching assay, while MTT, NBT, ELISA, and Griess assays were carried out to explore the anti-neuroinflammatory and neuroprotective potential of extracts. Inhibitory activities on acetylcholinesterase and tyrosinase were assessed experimentally and by docking analysis. The highest content of secondary metabolites and antioxidant activity were observed in moss during the summer. Extracts inhibited the secretion of ROS, NO, TNF-α, and IL-6, alleviating the inflammatory potential of H2O2 and LPS in microglial and neuronal cells. Strong inhibitory effects on acetylcholinesterase and tyrosinase were observed in vitro. Docking analyses revealed high-affinity interactions of secondary metabolites present in H. cupressiforme with important enzyme residues. Altogether, these results reveal the neuroprotective potential and the significance of seasonal fluctuations on secondary metabolite content and biological activities in moss H. cupressiforme.

5.
Plants (Basel) ; 10(11)2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-34834669

RESUMO

This study was designed to evaluate the genoprotective, antigenotoxic, as well as antitumor potential of methanolic, ethanolic, and aqueous extracts of Melissa officinalis, Mentha × piperita, Ocimum basilicum, Rosmarinus officinalis, Salvia officinalis, and Satureja montana (Lamiaceae), in different model systems. The polyphenols in these extracts were quantified both spectrophotometrically and using HPLC-DAD technique, while DPPH assay was used to assess the antioxidant activity. The genoprotective potential was tested on pUC19 Escherichia coli XL1-blue, and the antigenotoxicity on Salmonella typhimurium TA1535/pSK1002 and human lung fibroblasts, while the antitumor activity was assessed on colorectal cancer cells. Rosmarinic acid, quercetin, rutin, and luteolin-7-O-glucoside were among the identified compounds. Methanolic extracts had the best DPPH-scavenging and SOS-inducing activities, while ethanolic extracts exhibited the highest antigenotoxicity. Additionally, all extracts exhibited genoprotective potential on plasmid DNA. The antitumor effect was mediated by modulation of reactive oxygen species (ROS), nitric oxide (NO) production, and exhibition of genotoxic effects on tumor cells, especially with O. basilicum ethanolic extract. Generally, the investigated extracts were able to provide antioxidant protection for the acellular, prokaryotic, and normal human DNA, while also modulating the production of ROS and NO in tumor cells, leading to genotoxicity toward these cells and their decrease in proliferation.

6.
PLoS One ; 16(6): e0253918, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185818

RESUMO

Autoimmune diseases, often triggered by infection, affect ~5% of the worldwide population. Rheumatoid Arthritis (RA)-a painful condition characterized by the chronic inflammation of joints-comprises up to 20% of known autoimmune pathologies, with the tendency of increasing prevalence. Molecular mimicry is recognized as the leading mechanism underlying infection-mediated autoimmunity, which assumes sequence similarity between microbial and self-peptides driving the activation of autoreactive lymphocytes. T lymphocytes are leading immune cells in the RA-development. Therefore, deeper understanding of the capacity of microorganisms (both pathogens and commensals) to trigger autoreactive T cells is needed, calling for more systematic approaches. In the present study, we address this problem through a comprehensive immunoinformatics analysis of experimentally determined RA-related T cell epitopes against the proteomes of Bacteria, Fungi, and Viruses, to identify the scope of organisms providing homologous antigenic peptide determinants. By this, initial homology screening was complemented with de novo T cell epitope prediction and another round of homology search, to enable: i) the confirmation of homologous microbial peptides as T cell epitopes based on the predicted binding affinity to RA-related HLA polymorphisms; ii) sequence similarity inference for top de novo T cell epitope predictions to the RA-related autoantigens to reveal the robustness of RA-triggering capacity for identified (micro/myco)organisms. Our study reveals a much larger repertoire of candidate RA-triggering organisms, than previously recognized, providing insights into the underestimated role of Fungi in autoimmunity and the possibility of a more direct involvement of bacterial commensals in RA-pathology. Finally, our study pinpoints Endoplasmic reticulum chaperone BiP as the most potent (most likely mimicked) RA-related autoantigen, opening an avenue for identifying the most potent autoantigens in a variety of different autoimmune pathologies, with possible implications in the design of next-generation therapeutics aiming to induce self-tolerance by affecting highly reactive autoantigens.


Assuntos
Artrite Reumatoide/imunologia , Doenças Autoimunes/imunologia , Leucócitos Mononucleares/imunologia , Linfócitos T/imunologia , Artrite Reumatoide/microbiologia , Autoantígenos/genética , Autoantígenos/imunologia , Doenças Autoimunes/microbiologia , Doenças Autoimunes/patologia , Autoimunidade/genética , Autoimunidade/imunologia , Epitopos de Linfócito T/genética , Feminino , Humanos , Leucócitos Mononucleares/microbiologia , Masculino , Linfócitos T/microbiologia , Linfócitos T/patologia
7.
PLoS One ; 16(2): e0246810, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33571277

RESUMO

Bioactive compounds from natural sources are of great importance because of their potential pharmacological activity and tremendous structural diversity. In this study, the chemical composition of different moss extracts of Hedwigia ciliata P. Beauv. have been examined, as well as their antioxidant, antineurodegenerative/anti-neuroinflammatory, antidiabetic, and antiproliferative potential. The extracts were prepared by Soxhlet extractor using solvents of different polarity. Chemical characterization of the extracts revealed the presence of phenolics and flavonoid compounds, together with triterpenoids as secondary metabolites of high biological activity. Significant antioxidant properties of all the extracts were exhibited using the ß-carotene assay. The highest activities were found for water:ethanol extract (with the highest inhibition rate of 96%), but also significant inhibition was measured for ethanol and ethyl acetate extracts (80% and 70%, respectively). Confirmation of biocompatibility of investigated moss extracts has been performed using normal human fibroblast cell line, MRC-5. The H. ciliata extracts exhibited significant antiproliferative activity (~ 50%) against the MDA-MB-231 (human breast adenocarcinoma cell line), which has not previously been reported elsewhere. The Griess assay confirmed the potential anti-neuroinflammatory activity of the extracts, as significant effects in reducing NO production by LPS-stimulated BV2 (normal murine microglia cell line) was observed. This data is in line with noted antineurodegenerative potential measured by the inhibition of acetylcholinesterase (with the highest inhibition rate of 60% for ethyl acetate extract) and tyrosinase (with the highest inhibition rate of 70% for ethanol extract). Additionally, the H. ciliata extracts exhibited significant antidiabetic effect mediated by α-glucosidase inhibition (with the highest inhibition rate of 80% for ethyl acetate extract). The obtained data suggest the presence of immunomodulatory effects of the moss extracts in vitro, which allows the design of new experiments aimed at detecting and characterizing bioactive compounds of the extracts and additionally elucidate detailed mechanisms of their effects.


Assuntos
Briófitas , Fibroblastos/efeitos dos fármacos , Extratos Vegetais/química , Antioxidantes/farmacologia , Linhagem Celular , Cumarínicos/análise , Fibroblastos/metabolismo , Flavonoides/análise , Humanos , Hidroxibenzoatos/análise , Óxido Nítrico/metabolismo , Extratos Vegetais/farmacologia , Sérvia , Triterpenos/análise
8.
Molecules ; 25(15)2020 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717985

RESUMO

Recently, there has been an increasing interest in the chemistry and biological potential of mosses, since a large number of biologically active compounds have been found within these species. This study aimed at examining the chemical composition and immunomodulatory potential (antioxidant, antidiabetic, anti-neuroinflammatory/antineurodegenerative, and antitumor activities) of moss Hypnum cupressiforme Hedw. extracts. Corresponding extracts have been obtained applying Soxhlet extractor. The chemical characterization was performed using spectrophotometric assays and liquid chromatography-mass spectrometry (LC-MS). The extracts were analyzed for antioxidant activity and for inhibitory activities on α-glucosidase, α-amylase, acetylcholinesterase, and tyrosinase. Additionally, extracts were tested against four cell lines-MRC-5, BV2, HCT-116, and MDA-MB-231-for antitumor and anti-inflammatory activities. Chemical analysis of extracts revealed the presence of flavonoids, phenolic acids, and triterpenoids. Major compounds identified by LC-MS in H. cupressiforme were kaempferol and five phenolic acids: p-hydroxybenzoic, protocatechuic, p-coumaric, gallic, and caffeic acid. According to biochemical assays the investigated extracts exhibited significant immunomodulatory potential. Significant antiproliferative potential against MDA-MB-231 cells has been observed together with the promising anti-neuroinflammatory application. The obtained data suggest that moss H. cupressiforme is a valuable natural source of biologically active compounds with potential application in the pharmaceutical industry.


Assuntos
Anti-Inflamatórios/farmacologia , Antineoplásicos/farmacologia , Briófitas/química , Fatores Imunológicos/farmacologia , Extratos Vegetais/farmacologia , Acetilcolinesterase/metabolismo , Anti-Inflamatórios/química , Antineoplásicos/química , Linhagem Celular Tumoral , Cromatografia Líquida de Alta Pressão , Flavonoides/química , Flavonoides/farmacologia , Células HCT116 , Humanos , Hidroxibenzoatos/química , Hidroxibenzoatos/farmacologia , Fatores Imunológicos/química , Espectrometria de Massas , Monofenol Mono-Oxigenase/antagonistas & inibidores , Extratos Vegetais/química , Triterpenos/química , Triterpenos/farmacologia , alfa-Amilases/antagonistas & inibidores , alfa-Glucosidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...